DOI QR코드

DOI QR Code

SiOC Coating on Stainless Steel Using Polyphenylcarbosilane, and Its Anti-corrosion Properties

폴리페닐카보실란을 이용한 SiOC가 코팅된 스테인리스스틸 제조 및 이의 내부식성 특징

  • Kim, Jong-Il (Department of Green-Ceramics, Korea Institute of Ceramic Engineering and Technology(KICET)) ;
  • Lee, Yoon-Joo (Department of Green-Ceramics, Korea Institute of Ceramic Engineering and Technology(KICET)) ;
  • Kim, Soo-Ryong (Department of Green-Ceramics, Korea Institute of Ceramic Engineering and Technology(KICET)) ;
  • Kim, Young-Hee (Department of Green-Ceramics, Korea Institute of Ceramic Engineering and Technology(KICET)) ;
  • Kim, Jung-Il (Tokai Carbon Korea Co., Ltd.) ;
  • Woo, Chang-Hyn (Tokai Carbon Korea Co., Ltd.) ;
  • Choi, Doo-Jin (Department of Materials Science and Engineering, Yonsei University)
  • 김종일 (한국세라믹기술원 에너지소재센터) ;
  • 이윤주 (한국세라믹기술원 에너지소재센터) ;
  • 김수룡 (한국세라믹기술원 에너지소재센터) ;
  • 김영희 (한국세라믹기술원 에너지소재센터) ;
  • 김정일 (주식회사 티씨케이) ;
  • 우창현 (주식회사 티씨케이) ;
  • 최두진 (연세대학교 신소재공학과)
  • Received : 2010.08.09
  • Accepted : 2010.10.20
  • Published : 2011.01.27

Abstract

To improve the chemical stability of metal, the ceramic coatings on metallic materials have attracted interest from many researchers due to the chemical inertness of ceramic materials. To endure strong acids, SiOC coating on metal substrate was carried out by dip coating method using 20wt% polyphenylcarbosilane solution; SiC powder was added to the solution at 10wt% and 15wt% to improve the mechanical properties and to prevent cracks of the film. Thermal oxidation as a curing step was carried out at $200^{\circ}C$ for crosslinking of the polyphenylcarbosilane, and the coating samples were pyrolysized at $800^{\circ}C$ under argon to convert the polyphenylcarbosilane to SiOC film. The thicknesses of the SiOC coating films were $2.36{\mu}m$ and $3.16{\mu}m$. The quantities of each element were measured as $SiO_{1.07}C_{6.33}$ by EPMA, and it can be confirmed that the SiOC film from polyphenylcarbosilane was formed in a manner that was carbon rich. The hardness of the SiOC film was found to be 3.2Gpa through nanoindentor measurement. No defect including cracks appeared in the SiOC film. The weight loss of the SiOC coated stainless steel was within 2% after soaking in 10% HCl solution at $80^{\circ}C$ for one week. From these results, SiOC coating shows good potential for application to protect against severe chemical corrosion of stainless steel.

Keywords

References

  1. Q. R. Hou, J. Gao and S. J. Li, Appl. Phys. A Mater. Sci. Process., 67, 367 (1998). https://doi.org/10.1007/s003390050786
  2. B. C. Valek and J. M. Hampikian, Surf. Coating. Tech., 94-95, 13 (1997). https://doi.org/10.1016/S0257-8972(97)00469-6
  3. J. M. Yoon and Y. G. Kim, Kor. J. Mater. Res., 13(9), 625 (2003) (in Korean). https://doi.org/10.3740/MRSK.2003.13.9.625
  4. T. L. Metroke, R. L. Parkhill and E. T. Knobbe, Progr. Org. Coating., 41, 233 (2001). https://doi.org/10.1016/S0300-9440(01)00134-5
  5. M. L. Zheludkevich, I. M. Salvado and M. G. S. Ferreira, J. Mater. Chem., 15, 5099 (2005). https://doi.org/10.1039/b419153f
  6. Q. Li, X. Zhong, J. Hu and W. Kang, Progr. Org. Coating., 63, 222 (2008). https://doi.org/10.1016/j.porgcoat.2008.06.004
  7. N. Ozer, J. P. Cronin, Y. J. Yao and A. P. Tomsia, Sol. Energ. Mater. Sol. Cell., 59, 355 (1999). https://doi.org/10.1016/S0927-0248(99)00054-9
  8. P. C. R. Varma, B. Duffy and J. Cassidy, Surf. Coating. Tech., 204, 277 (2009). https://doi.org/10.1016/j.surfcoat.2009.07.024
  9. H. Q. Ly, R. Taylor, R. J. Day and F. Heatley, J. Mater. Sci., 36, 4037 (2001). https://doi.org/10.1023/A:1017942826657
  10. Y. -L. Li, H. Fan, D. Su, C. Fasel and R. Riedel, J. Am. Ceram. Soc., 92, 2175 (2009). https://doi.org/10.1111/j.1551-2916.2009.03184.x
  11. K. Kaneko and K. I. Kakimoto, J. Non-Cryst. Solids, 270, 181 (2000). https://doi.org/10.1016/S0022-3093(00)00011-9
  12. M. A. Schiavon, S. U. A. Redondo, S. R. O. Pina and I. V. P. Yoshida, J. Non-Cryst. Solids, 304, 92 (2002). https://doi.org/10.1016/S0022-3093(02)01009-8
  13. C. G. Pantano, A. K. Singh and H. Zhang, J. Sol-Gel Sci. Tech., 14, 7 (1999). https://doi.org/10.1023/A:1008765829012
  14. P. Greil, J. Am. Ceram. Soc., 78, 835 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08404.x
  15. Y. J. Lee, J. H. Lee, S. R. Kim, W. T. Kwon, H. J. Oh, J. P. Klepeis, S. J. Teat and Y. H. Kim, J. Mater. Sci., 45, 1025 (2010). https://doi.org/10.1007/s10853-009-4034-2
  16. P. Colombo, T. E. Paulson and C. G. Pantano, J. Am. Ceram. Soc., 80, 2333 (1997).
  17. R. P. Socha, K. Laajalehto and P. Nowak, Surf. Interface Anal., 34, 413 (2002). https://doi.org/10.1002/sia.1329
  18. Q. Wang, C. G. Pantano and J. F. Annett, Phys. Status Solidi B, 216, 909 (1999). https://doi.org/10.1002/(SICI)1521-3951(199912)216:2<909::AID-PSSB909>3.0.CO;2-Z

Cited by

  1. Step-Growth Polymerization of Poly(phenylcarbosilane) and Its Structural and Physical Properties vol.22, pp.2, 2012, https://doi.org/10.1007/s10904-011-9624-1
  2. SiOC Anode Material Derived from Poly(phenyl carbosilane) for Lithium Ion Batteries vol.50, pp.6, 2013, https://doi.org/10.4191/kcers.2013.50.6.480
  3. Preparation of Si(Al)ON Precursor Using Organoaluminum Imine and Poly (Phenyl Carbosilane), and the Compositional Change of the Film with Different Heat Treatment Condition vol.52, pp.4, 2015, https://doi.org/10.4191/kcers.2015.52.4.243