DOI QR코드

DOI QR Code

Dependence of the Heterojunction Diode Characteristics of ZnO/ZnO/p-Si(111) on the Buffer Layer Thickness

버퍼막 두께에 따른 ZnO/ZnO/p-Si(111) 이종접합 다이오드 특성 평가

  • Heo, Joo-Hoe (Department of Nano Systems Engineering, Inje University) ;
  • Ryu, Hyuk-Hyun (Department of Nano Systems Engineering, Inje University) ;
  • Lee, Jong-Hoon (Major of Nano Semiconductor, Korea Maritime University)
  • 허주회 (인제대학교 나노시스템공학과) ;
  • 류혁현 (인제대학교 나노시스템공학과) ;
  • 이종훈 (한국해양대학교 응용과학과)
  • Received : 2010.10.22
  • Accepted : 2010.11.24
  • Published : 2011.01.27

Abstract

In this study, the effects of an annealed buffer layer with different thickness on heterojunction diodes based on the ZnO/ZnO/p-Si(111) systems were reported. The effects of an annealed buffer layer with different thickness on the structural, optical, and electrical properties of zinc oxide (ZnO) films on p-Si(111) were also studied. Before zinc oxide (ZnO) deposition, different thicknesses of ZnO buffer layer, 10 nm, 30 nm, 50 nm and 70 nm, were grown on p-Si(111) substrates using a radio-frequency sputtering system; samples were subsequently annealed at $700^{\circ}C$ for 10 minutes in $N_2$ in a horizontal thermal furnace. Zinc oxide (ZnO) films with a width of 280nm were also deposited using a radio-frequency sputtering system on the annealed ZnO/p-Si (111) substrates at room temperature; samples were subsequently annealed at $700^{\circ}C$ for 30 minutes in $N_2$. In this experiment, the structural and optical properties of ZnO thin films were studied by XRD (X-ray diffraction), and room temperature PL (photoluminescence) measurements, respectively. Current-voltage (I-V) characteristics were measured with a semiconductor parameter analyzer. The thermal tensile stress was found to decrease with increasing buffer layer thickness. Among the ZnO/ZnO/p-Si(111) diodes fabricated in this study, the sample that was formed with the condition of a 50 nm thick ZnO buffer layer showed a strong c-axis preferred orientation and I-V characteristics suitable for a heterojunction diode.

Keywords

References

  1. S. L. King, J. G. E. Gardeniers and I. W. Boyd, Appl. Surf. Sci., 96-98, 811 (1996). https://doi.org/10.1016/0169-4332(96)80027-4
  2. Y. L. Liu., Y. C. Liu, Y. X. Liu, D. Z. Shen, Y. M. Lu, J. Y. Zhang and X. W. Fan, Phys. B Condens. Matter, 322, 31 (2002). https://doi.org/10.1016/S0921-4526(02)00594-X
  3. M. Y. Cho, M. S. Kim, G. S. Kim, H. Y. Choi, S. M. Jeon, K. G. Yim, D. Lee, J. S. Kim, J. S. Kim, J. I. Lee and J. Leem, Kor. J. Mater. Res., 20(5), 262 (2010) (in Korean). https://doi.org/10.3740/MRSK.2010.20.5.262
  4. Y. Zhang, G. Du, B. Liu, H. C. Zhu, T. Yang, W. Li, D. Liu and S. Yang, J. Cryst. Growth, 262, 456 (2004). https://doi.org/10.1016/j.jcrysgro.2003.10.079
  5. S. Kim and J. Myoung, Kor. J. Mater. Res., 19(1), 24 (2009) (in Korean). https://doi.org/10.3740/MRSK.2009.19.1.024
  6. N. L. Hung, H. Kim and D. Kim, Kor. J. Mater. Res., 20(5), 235 (2010) (in Korean). https://doi.org/10.3740/MRSK.2010.20.5.235
  7. J. H. Lee, J. Y. Lee, J. J. Kim, H. S. Kim, N. W. Jang, W. J. Lee and C. R. Cho, J. Korean Phys. Soc., 56 (12), 429 (2010). https://doi.org/10.3938/jkps.56.429
  8. J. Lim and C. Lee, Thin Solid Films, 515, 3335 (2007). https://doi.org/10.1016/j.tsf.2006.09.007
  9. C. R. Kim, J. Y. Lee, C. M. Shin, J. Y. Leem, H. Ryu, J. H. Chang, H. C. Lee, C. S. Son, W. J. Lee, W. G. Jung, S. T. Tan, J. L. Zhao and X. W. Sun, Solid State Comm., 148, 395 (2008). https://doi.org/10.1016/j.ssc.2008.09.034
  10. K. H. Bang, D. K. Hwang and J. M. Myoung, Appl. Surf. Sci., 207, 359 (2003). https://doi.org/10.1016/S0169-4332(03)00005-9
  11. M. Y. Cho, M. S. Kim, H. Y. Choi, S. M Jeon, G. S. Kim, D. Y. Kim, K. G. Yim and J. Y. Leem, J. Korean Phys. Soc., 56(6), 1833 (2010). https://doi.org/10.3938/jkps.56.1833
  12. A. Miyake, H. Kominami, H. Tatsuoka, H. Kuwabara, Y. Nakanishi and Y. Hatanaka, J. Cryst. Growth, 214-215, 294 (2000). https://doi.org/10.1016/S0022-0248(00)00095-6
  13. Z. B. Fang, Z. J. Yan, Y. S. Tan, X. Q. Liu and Y. Y. Wang, Appl. Surf. Sci., 241, 303 (2005). https://doi.org/10.1016/j.apsusc.2004.07.056
  14. H. C. Ong, A. X. E. Zhu and G. T. Du, Appl. Phys. Lett., 80, 941 (2002). https://doi.org/10.1063/1.1448660
  15. R. Hong, J. Huang, H. He, Z. Fan and J. Shao, Appl. Surf. Sci., 242, 346 (2005). https://doi.org/10.1016/j.apsusc.2004.08.037
  16. C. Wang, P. Zhang, J. Yue, Y. Zhang and L. Zheng, Phys. B Condens. Matter, 403, 2235 (2008). https://doi.org/10.1016/j.physb.2007.12.002
  17. C. Li, X. C. Li, P. X. Yan, E. M. Chong, Y. Liu, G. H. Yue and X. Y. Fan, Appl. Surf. Sci., 253, 4000 (2007). https://doi.org/10.1016/j.apsusc.2006.08.048
  18. L. Wang, Y. Pu, Y. F. Chen, C. L. Mo, W. Q. Fang, C.B. Xiong, J. N. Dai and F. Y. Jiang, J. Cryst. Growth, 284, 459 (2005). https://doi.org/10.1016/j.jcrysgro.2005.06.058
  19. W. Zhaoyang and H. Lizhong, Vacuum, 83, 906 (2009). https://doi.org/10.1016/j.vacuum.2008.08.008