DOI QR코드

DOI QR Code

Development and Synthesis of La Doped CuO-ZnO-Al2O3 Mixed Oxide

La이 도핑된 CuO-ZnO-Al2O3 복합 산화물의 합성공정개발

  • Jung, Mie-Won (School of Biological Sciences and Chemistry/Institute of Basic Science, Sungshin Women's Univ.) ;
  • Lim, Saet-Byeol (School of Biological Sciences and Chemistry/Institute of Basic Science, Sungshin Women's Univ.) ;
  • Moon, Bo-Ram (School of Biological Sciences and Chemistry/Institute of Basic Science, Sungshin Women's Univ.) ;
  • Hong, Tae-Whan (Department of Material Science and Engineering/Research Center for Sustainable Eco-Devices and Materials (ReSEM), Chungju National Univ.)
  • 정미원 (성신여자대학교 생명과학 화학부) ;
  • 임샛별 (성신여자대학교 생명과학 화학부) ;
  • 문보람 (성신여자대학교 생명과학 화학부) ;
  • 홍태환 (충주대학교 신소재공학과/친환경에너지부품소재센터)
  • Received : 2010.11.16
  • Accepted : 2010.12.31
  • Published : 2011.01.27

Abstract

La doped CuO-ZnO-$Al_2O_3$ powders are prepared by sol-gel method with aluminum isopropoxide and primary distilled water as precursor and solvent. In this synthesized process, the obtained metal oxides caused the precursor such as copper (II) nitrate hydrate and zinc (II) nitrate hexahydrate were added. To improve the surface areas of La doped CuO-ZnO-$Al_2O_3$ powder, sorbitan (z)-mono-9-octadecenoate (Span 80) was added. The synthesized powder was calcined at various temperatures. The dopant was found to affect the surface area and particle size of the mixed oxide, in conjunction with the calcined temperature. The structural analysis and textual properties of the synthesized powder were measured with an X-ray Diffractometer (XRD), a Field-Emission Scanning Electron Microscope (FE-SEM), Bruner-Emmett-Teller surface analysis (BET), Thermogravimetry-Differential Thermal analysis (TG/DTA), $^{27}Al$ solid state Nuclear Magnetic Resonance (NMR) and transform infrared microspectroscopy (FT-IR). An increase of surface area with Span 80 was observed on La doped CuO-ZnO-$Al_2O_3$ powders from $25m^2$/g to $41m^2$/g.

Keywords

References

  1. U. Y. Hwang, S. W. Lee, J. W. Lee, H. S. Park, K. K. Koo, S. J. Yoo, H. S. Yoon and Y. R. Kim, Hwahakkonghak, 39(2), 206 (2001).
  2. A. Vazquez, T. Lopez, R. Gomez, X. Bokihimi, A. Morales and O. Novaro, J. Solid State Chem., 128(2), 161 (1997). https://doi.org/10.1006/jssc.1996.7135
  3. A. Venugopal, J. Palgunadi, K. D. Jung, O. S. Joo and C. H. Shin, J. Mol. Catal. Chem., 302, 20 (2009). https://doi.org/10.1016/j.molcata.2008.11.038
  4. S. B. Lim, H. You, T. W. Hong and M. W. Jung, Kor. J. Mater. Res., 20(9), 472 (2010) (in Korean). https://doi.org/10.3740/MRSK.2010.20.9.472
  5. C. M. Hung, Powder Tech., 191, 21 (2009). https://doi.org/10.1016/j.powtec.2008.09.003
  6. E. Kalwarczyk, M. Golos, R. Holyst and M. Fialkowski, J. Colloid Interface Sci., 342, 93 (2010). https://doi.org/10.1016/j.jcis.2009.10.016
  7. R. Penterman, S. I. Klink, H. de Koning, G. Nisato and D. J. Broer, Nature, 417, 55 (2002). https://doi.org/10.1038/417055a
  8. H. B. Chen, D. W. Liao, L. J. Yu, Y. J. Lin, J. Yi, H. B. Zhang and K. R. Tsai, Appl. Surf. Sci., 147, 85 (1999). https://doi.org/10.1016/S0169-4332(99)00081-1
  9. Y. Yang , Y. Kou, Chem. Comm., 226 (2004). DOI : 10.1039/B311615H.
  10. M. H. Lee, M. W. Jung, J. Kor. Ceram. Soc., 45(5), 297 (2008) (in Korean). https://doi.org/10.4191/KCERS.2008.45.5.297