APPROXIMATE CONTROLLABILITY FOR DIFFERENTIAL EQUATIONS WITH QUASI-AUTONOMOUS OPERATORS

JIN-MUN JEONG, EUN YOUNG JU, AND YONG HAN KANG

Abstract. The approximate controllability for the nonlinear control system with nonlinear monotone hemicontinuous and coercive operator is studied. The existence, uniqueness and a variation of solutions of the system are also given.

1. Introduction

Let H and V be two real separable Hilbert spaces such that V is a dense subspace of H. We are interested in the approximate controllability for the following nonlinear functional control system on H:

\[
\begin{align*}
\frac{dx(t)}{dt} + Ax(t) &\ni (Bu)(t), \\
x(0) &= x_0.
\end{align*}
\]

Assume that A is a monotone hemicontinuous operator from V to V^* and satisfies the coercive condition. Here V^* stands for the dual space of V. Let U be a Banach space and the controller operator B be a bounded linear operator from the Banach space $L^2(0, T; U)$ to $L^2(0, T; H)$. If $Bu \in L^2(0, T; V^*)$, it is well known as the quasi-autonomous differential equation (see Theorem 2.6 of Chapter III in Barbu [5]). In [5], the existence and the norm estimate of a solution of the above equation on $L^2(0, T; V) \cap W^{1,2}(0, T; V^*)$ was given, and results similar to this case were obtained by many authors (see bibliographical notes of [5, 6, 7, 10, 11]), which is also applicable to optimal control problem.

The optimal control problems for a class of systems governed by a class of nonlinear evolution equations with nonlinear operator A have been studied in references by Ahmed, Teo and Xiang [1, 2, 3]. The condition equivalent to the approximate controllability for semilinear control system have been obtained in by Naito [9] and Zhou [11]. As for the semilinear control system with the linear operator A generated C_0-semigroup, Naito [9] proved the approximate
controllability under the range conditions of the controller B. The papers treating the controllability for systems with nonlinear principal operator A are not many.

In the present article, we will prove the approximately controllable for (E) under a rather applicable assumption on the range of the control operator B, namely that $\{y : y(t) = Bu(t), u \in L^2(0,T;U)\}$ is dense subspace of $L^2(0,T;H)$, which is reasonable and widely used in case of the nonlinear system (refer to [11, 9, 8]).

2. Quasi-autonomous differential equations

If H is identified with its dual space we may write $V \subset H \subset V^*$ densely and the corresponding injections are continuous. The norm on V, H and V^* will be denoted by $|| \cdot ||_1$, $|| \cdot ||$ and $|| \cdot ||_*$, respectively. Thus, in terms of the intermediate theory we may assume that $(V, V_1^2, V^*)_\lambda^2 = H$, where $(V, V_1^2, V^*)_\lambda^2$ denotes the real interpolation space between V and V^*.

We note that a nonlinear operator A is said to be hemicontinuous on V if

$$\omega \lim_{t \to 0} A(x + ty) = Ax$$

for every $x, y \in V$ where “ω-lim” indicates the weak convergence on V.

Let $A : V \to V^*$ be given as a monotone operator and hemicontinuous from V to V^* such that

$$A(0) = 0,$$

$$(Au - Av, u-v) \geq \omega_1 ||u-v||^2 - \omega_2 ||u-v||^2,$$

$$||Au||_* \leq \omega_2(||u|| + 1)$$

for every $u, v \in V$, where ω_2 is a real number and ω_1, ω_3 are some positive constants.

Here, we note that if $0 \neq A(0)$ we need the following assumption

$$(Au, u) \geq \omega_1 ||u||^2 - \omega_2 ||u||^2$$

for every $u \in V$. It is also known that A is maximal monotone and $R(A) = V^*$, where $R(A)$ denotes the range of A.

Let $h \in L^2(0,T;V^*)$ and x be the solution of the following quasi-autonomous differential equation with $B = I$:

$$\begin{cases}
\frac{dx(t)}{dt} + Ax(t) \ni h(t), & 0 < t \leq T, \\
x(0) = x_0,
\end{cases}$$

(1)
where \(A \) is given satisfying the hypotheses mentioned above. The following result is from Theorem 2.6 of Chapter III in [5].

Proposition 2.1. Let \(x_0 \in H \) and \(h \in L^2(0,T;V^*) \). Then there exists a unique solution \(x \) of (2.1) belonging to

\[
C([0,T];H) \cap L^2(0,T;H) \cap W^{1,2}(0,T;V^*)
\]

and satisfying

\[
|x(t)|^2 + \int_0^t ||x(s)||^2 ds \leq C_1(|x_0|^2 + \int_0^t ||h(s)||^2 ds + 1),
\]

\[
\int_0^t ||x(s)||^2 ds \leq C_1(|x_0|^2 + \int_0^t ||h(s)||^2 ds + 1),
\]

where \(C_1 \) is a constant.

Lemma 2.2. Let \(x_h \) and \(x_k \) be the solutions of (1) corresponding to \(h \) and \(k \) in \(L^2(0,T;V^*) \). Then we have that

\[
\frac{1}{2} |x_h(t) - x_k(t)|^2 + \omega_1 \int_0^t ||x_h(s) - x_k(s)||^2 ds \leq \int_0^t e^{2\omega_2(t-s)} ||x_h(s) - x_k(s)|| ||h(s) - k(s)||_s ds,
\]

and

\[
\frac{1}{2} |x_h(t)|^2 + \omega_1 \int_0^t ||x_h(s)||^2 ds \leq \frac{e^{2\omega_2 t}}{2} |x_0|^2 + \int_0^t e^{2\omega_2(t-s)} ||x_h(s)|| ||h(s)||_s ds.
\]

Proof. In order to prove (5), taking scalar product on both sides of (1) by \(x(t) \),

\[
\frac{1}{2} \frac{d}{dt} |x_h(t)|^2 + \omega_1 |x_h(t)|^2 \leq \omega_2 |x_h(t)|^2 + ||x_h(t)|| ||h(t)||_s.
\]

Integrating on \([0,t]\), we get

\[
\frac{1}{2} |x_h(t)|^2 + \omega_1 \int_0^t ||x_h(s)||^2 ds \leq \frac{1}{2} |x_0|^2 + \omega_2 \int_0^t |x_h(s)|^2 ds + \int_0^t ||x_h(s)|| ||h(s)||_s ds.
\]

From (6) it follows that

\[
\frac{d}{dt} (e^{-2\omega_2 t} \int_0^t |x_h(s)|^2 ds) = 2e^{-2\omega_2 t} \left\{ \frac{1}{2} |x_h(t)|^2 - \omega_2 \int_0^t |x_h(s)|^2 ds \right\} \leq 2e^{-2\omega_2 t} \left\{ \frac{1}{2} |x_0|^2 + \int_0^t ||x_h(s)|| ||h(s)||_s ds \right\}.
\]
Integrating (7) over $(0,t)$ we have
\[
e^{-2\omega_2 t} \int_0^t |x_h(s)|^2 ds
\leq 2 \int_0^t e^{-2\omega_2 \tau} \int_0^\tau ||x_h(s)|| \|h(s)||_* ds d\tau + \frac{1 - e^{-2\omega_2 t}}{2\omega_2} |x_0|^2
\]
\[
= 2 \int_0^t \int_s^t e^{-2\omega_2 \tau} ||x_h(s)|| \|h(s)||_* ds + \frac{1 - e^{-2\omega_2 t}}{2\omega_2} |x_0|^2
\]
\[
= 2 \int_0^t \frac{e^{-2\omega_2 s} - e^{-2\omega_2 t}}{2\omega_2} ||x_h(s)|| \|h(s)||_* ds + \frac{1 - e^{-2\omega_2 t}}{2\omega_2} |x_0|^2
\]
\[
= \frac{1}{\omega_2} \int_0^t (e^{-2\omega_2 s} - e^{-2\omega_2 t}) ||x_h(s)|| \|h(s)||_* ds + \frac{1 - e^{-2\omega_2 t}}{2\omega_2} |x_0|^2,
\]
and hence,
\[
\omega_2 \int_0^t |x_h(s)|^2 ds \leq \int_0^t (e^{2\omega_2 (t-s)} - 1) ||x_h(s)|| \|h(s)||_* ds + \frac{e^{2\omega_2 t} - 1}{2} |x_0|^2.
\]
Combining (6) with (8) it follows that
\[
\frac{1}{2} |x(t)|^2 + \omega_1 \int_0^t ||x_h(s)||^2 ds \leq \frac{e^{2\omega_2 t}}{2} |x_0|^2 + \int_0^t e^{2\omega_2 (t-s)} ||x_h(s)|| \|h(s)||_* ds.
\]
We also obtain (4) by the similar argument in the proof of (5).

Theorem 2.3. If $(x_0, h) \in H \times L^2(0, T; V^*)$, then $x \in L^2(0, T; V) \cap C([0, T]; H)$ and the mapping
\[
H \times L^2(0, T; V^*) \ni (x_0, h) \mapsto x \in L^2(0, T; V) \cap C([0, T]; H)
\]
is continuous.

Proof. By virtue of Proposition 2.1 for any $(x_0, h) \in H \times L^2(0, T; V^*)$, the solution x of (1) belongs to $L^2(0, T; V) \cap C([0, T]; H)$. Let $(x_{0i}, h_i) \in H \times L^2(0, T; V^*)$ and x_i be the solution of (1) with (x_{0i}, h_i) instead of (x_0, h) for $i = 1, 2$. Multiplying on (1) by $x_1(t) - x_2(t)$, we have
\[
\frac{1}{2} \frac{d}{dt} |x_1(t) - x_2(t)|^2 + \omega_1 ||x_1(t) - x_2(t)||^2
\leq \omega_2 |x_1(t) - x_2(t)|^2 + ||x_1(t) - x_2(t)|| ||h_1(t) - h_2(t)||_*.
\]
By the similar process of the proof of (5) it holds
\[
\frac{1}{2} |x_1(t) - x_2(t)|^2 + \omega_1 \int_0^t ||x_1(s) - x_2(s)||^2 ds
\leq \frac{e^{2\omega_2 t}}{2} |x_0_1 - x_0_2|^2 + \int_0^t e^{2\omega_2 (t-s)} ||x_1(s) - x_2(s)|| ||h_1(s) - h_2(s)||_* ds.
\]
We can choose a constant $c > 0$ such that
\[
\omega_1 - e^{2\omega_2 T} \frac{c}{2} > 0
\]
and, hence

\[
\int_0^T e^{2c_2(t-s)} ||x_1(s) - x_2(s)|| ||h_1(s) - h_2(s)|| \, ds \\
\leq e^{2c_2T} \int_0^T \left\{ \frac{c}{2} ||x_1(s) - x_2(s)||^2 + \frac{1}{2c} ||h_1(s) - h_2(s)||_2^2 \right\} \, ds.
\]

Thus, there exists a constant \(C > 0 \) such that

\[
||x_1 - x_2||_{L^2(0,T;V) \cap C([0,T];H)} \leq C(||x_{01} - x_{02}|| + ||h_1 - h_2||_{L^2(0,T;V^*)}).
\]

Suppose \((x_{0n}, h_n) \to (x_0, h)\) in \(H \times L^2(0,T;V^*)\), and let \(x_n\) and \(x\) be the solutions \((E)\) with \((x_{0n}, h_n)\) and \((x_0, h)\), respectively. Then, by virtue of (9), we see that \(x_n \to x\) in \(L^2(0,T,V) \cap C([0,T];H)\).

\[
\square
\]

3. Approximate controllability

In what follows we assume that the embedding \(V \subset H \) is compact. Let \(x_h\) be the solution of \((1)\) corresponding to \(h\) in \(L^2(0,T;V^*) \). We define the solution mapping \(S\) from \(L^2(0,T;V^*) \) to \(L^2(0,T;V) \) by

\(\quad (Sh)(t) = x_h(t), \quad h \in L^2(0,T;V^*)\).

Let \(A\) be the Nemitsky operator corresponding to the map \(A\), which is defined by \(A(x) = Ax\). Then

\(\quad x_h(t) = \int_0^t ((I-A)S)h(s) \, ds,\)

and with the aid of Proposition 2.1

\[
||Sh||_{L^2(0,T;V) \cap W^{1,2}(0,T;V^*)} = ||x_h||_{L^2(0,T;V) \cap W^{1,2}(0,T;V^*)} \\
\leq C_1(||x_0|| + ||h||_{L^2(0,T;V^*)} + 1).
\]

Hence if \(h\) is bounded in \(L^2(0,T;V^*) \), then so is \(x_h\) in \(L^2(0,T;V) \cap W^{1,2}(0,T;V^*) \). Since \(V \) is compactly embedded in \(H \) by assumption, the embedding \(L^2(0,T;V) \cap W^{1,2}(0,T;V^*) \subset L^2(0,T;H) \) is compact in view of Theorem 2 of Aubin [4]. Hence, since the embedding \(L^2(0,T;H) \subset L^2(0,T;V^*) \) is continuous, the mapping \(h \mapsto Sh = x_h \) is compact from \(L^2(0,T;V^*) \) to itself.

The solution of \((E)\) is denoted by \(x(T;u)\) associated with the control \(u\) at time \(T\). The system \((E)\) is said to be \emph{approximately controllable} at time \(T\) if \(Cl\{x(T;u) : u \in L^2(0,T;U)\} = H\), where \(Cl\) denotes the closure in \(H\).

We assume

\(\quad (B) \quad Cl\{y : y(t) = (Bu)(t), \quad \text{a.e.} \quad u \in L^2(0,T;U)\} = L^2(0,T;H),\)

where \(Cl\) denotes also the closure in \(L^2(0,T;H)\).

The main results of this paper is the following:
Theorem 3.1. Let the assumption (B) be satisfied. If our constants condition in (F) contains the following inequality: $\omega_3 < \omega_1$, then

\begin{equation}
C(I - AS)h : h \in L^2(0, T; V^*) = L^2(0, T; V^*).
\end{equation}

Therefore, the nonlinear differential control system (E) is approximately controllable at time T.

Proof. Let us fix $T_0 > 0$ so that

\begin{equation}
N = \omega_1^{-1} \omega_2 e^{\omega_2 T_0} < 1.
\end{equation}

Let $z \in L^2(0, T_0; V^*)$ and r be a constant such that

$z \in U_r = \{x \in L^2(0, T_0; V^*) : \|x\|_{L^2(0, T_0; V^*)} < r\}.$

Take a constant $d > 0$ such that

\begin{equation}
(r + \omega_3 + \omega_3 \omega_1^{-1/2} e^{\omega_2 T_0}|x_0|)(1 - N)^{-1} < d.
\end{equation}

Let the assumption (B) holds. Since the assumption (B), there exists a sequence $\{u_n\} \subset L^2(0, T_0; U)$ such that $B_{U_n} \rightarrow h$ in $L^2(0, T_0; V^*)$. Then by Theorem 2.3 we have that $x(t; u_n) \rightarrow x_h$ in $L^2(0, T_0; V) \cap C([0, T_0]; H)$. Let $g \in H$. We can choose $g \in W^{1, 2}(0, T_0; V^*)$ such that $g(0) = x_0$ and $g(T_0) = y$ and from the equation
(15) there is \(h \in L^2(0, T_0; V^*) \) such that \(g' = (I - AS)h \). By the assumption (B) there exists \(u \in L^2(0, T_0; U) \) such that
\[
\| h - Bu \|_{L^2(0, T_0; V^*)} \leq \frac{\sqrt{2} \omega_1}{e^{\omega_2 T_0}} \epsilon
\]
for every \(\epsilon > 0 \). From (4)
\[
\frac{1}{2} \| x_h(t) - x_{Bu}(t) \|^2 + \omega_1 \int_0^t ||x_h(s) - x_{Bu}(s)||^2 \, ds \\
\leq \int_0^t e^{2\omega_2(t-s)} ||x_h(s) - x_{Bu}(s)|| \cdot ||h(s) - (Bu)(s)|| \, ds \\
\leq \omega_1 \int_0^t ||x_h(s) - x_{Bu}(s)||^2 \, ds + \frac{e^{2\omega_2 t}}{4\omega_1} \int_0^t ||h(s) - (Bu)(s)||^2 \, ds,
\]
it holds
\[
\| x_h - x_{Bu} \|_{C([0, T_0]; H)} \leq \frac{e^{\omega_2 T_0}}{\sqrt{2} \omega_1} \| h - Bu \|_{L^2(0, T_0; V^*)},
\]
thus, we have
\[
\| y - x_h(T) \| = \bigg\| \int_0^T ((I - AS)h)(s) \, ds - \int_0^T ((I - AS)Bu)(s) \, ds \bigg\| \\
\leq \frac{e^{\omega_2 T_0}}{\sqrt{2} \omega_1} \| h - Bu \|_{L^2(0, T_0; V^*)} \leq \epsilon.
\]
Therefore, the system (E) is approximately controllable at time \(T_0 \). Since the condition (12) is independent of initial values, we can solve the equation in \([T_0, 2T_0]\) with the initial value \(x(T_0) \). By repeating this process, the approximate controllability for (E) can be extended the interval \([0, nT_0]\) for natural number \(n \), i.e., for the initial value \(x(nT_0) \) in the interval \([nT_0, (n+1)T_0] \).

References

Jin-Mun Jeong
Division of Mathematical Sciences
Pukyong National University
Busan 608-737, Korea
E-mail address: jmjeong@pknu.ac.kr

Eun Young Ju
Division of Mathematical Sciences
Pukyong National University
Busan 608-737, Korea
E-mail address: nabifly@hanmail.net

Yong Han Kang
Department of Mathematics
University of Ulsan
Ulsan 680-749, Korea
E-mail address: yonghann@mail.ulsan.ac.kr