DOI QR코드

DOI QR Code

ON THE 2-BRIDGE KNOTS OF DUNWOODY (1, 1)-KNOTS

  • Received : 2009.06.22
  • Published : 2011.01.31

Abstract

Every (1, 1)-knot is represented by a 4-tuple of integers (a, b, c, r), where a > 0, b $\geq$ 0, c $\geq$ 0, d = 2a+b+c, $r\;{\in}\;\mathbb{Z}_d$, and it is well known that all 2-bridge knots and torus knots are (1, 1)-knots. In this paper, we describe some conditions for 4-tuples which determine 2-bridge knots and determine all 4-tuples representing any given 2-bridge knot.

Keywords

Acknowledgement

Supported by : Dong-eui University

References

  1. Kh. Aydin, I. Gultekyn, and M. Mulazzani, Torus knots and Dunwoody manifolds, Siberian Math. J. 45 (2004), no. 1, 1–6. https://doi.org/10.1023/B:SIMJ.0000013008.25556.29
  2. J. Berge, The knots in $D^2{\times}S^1$ which have nontrivial Dehn surgeries that yield $D^2{\times}S^1$, Topology Appl. 38 (1991), no. 1, 1–19. https://doi.org/10.1016/0166-8641(91)90037-M
  3. M. R. Casall and L. Grasselli, 2-symmetric crystallizations and 2-fold branched coverings of $S^3$, Discrete Math. 87 (1991), no. 1, 9–22. https://doi.org/10.1016/0012-365X(91)90066-B
  4. A. Cattabriga and M. Mulazzani, All strongly-cyclic branched coverings of (1, 1)-knots are Dunwoody manifolds, J. London Math. Soc. (2) 70 (2004), no. 2, 512–528. https://doi.org/10.1112/S0024610704005538
  5. A. Cavicchioli, B. Ruini, and F. Spaggiari, On a conjecture of M. J. Dunwoody, Algebra Colloq. 8 (2001), no. 2, 169–218.
  6. M. J. Dunwoody, Cyclic presentations and 3-manifolds, Groups—Korea ’94 (Pusan), 47–55, de Gruyter, Berlin, 1995.
  7. M. Ferry, Crystallizations of 2-fold branched coverings of $S^3$, Proc. Amer. Math. Soc., Vol.73 (1979), 271–276.
  8. H. Fujii, Geometric indices and the Alexander polynomial of a knot, Proc. Amer. Math. Soc. 124 (1996), no. 9, 2923–2933. https://doi.org/10.1090/S0002-9939-96-03489-2
  9. D. Gabai, Surgery on knots in solid tori, Topology 28 (1989), no. 1, 1–6. https://doi.org/10.1016/0040-9383(89)90028-1
  10. D. Gabai, 1-bridge braids in solid tori, Topology Appl. 37 (1990), no. 3, 221–235. https://doi.org/10.1016/0166-8641(90)90021-S
  11. C. Gagliardi, Extending the concept of genus to dimension n, Proc. Amer. Math. Soc. 81 (1981), no. 3, 473–481.
  12. L. Grasselli and M. Mulazzani, Genus one 1-bridge knots and Dunwoody manifolds, Forum Math. 13 (2001), no. 3, 379–397. https://doi.org/10.1515/form.2001.013
  13. C. Hayashi, Genus one 1-bridge positions for the trivial knot and cabled knots, Math. Proc. Cambridge Philos. Soc. 125 (1999), no. 1, 53–65. https://doi.org/10.1017/S0305004198002916
  14. S. H. Kim, On spatial theta-curves with the same $(Z_2\;{\oplus}\; Z_2)-fold$ and 2-fold branched covering, Note Mat. 23 (2004/05), no. 1, 111–122.
  15. S. H. Kim and Y. Kim, Torus knots and 3-manifolds, J. Knot Theory Ramifications 13 (2004), no. 8, 1103–1119. https://doi.org/10.1142/S0218216504003603
  16. T. Kobayashi, Classification of unknotting tunnels for two bridge knots, Proceedings of the Kirbyfest (Berkeley, CA, 1998), 259–290 (electronic), Geom. Topol. Monogr., 2, Geom. Topol. Publ., Coventry, 1999.
  17. K. Morimoto and M. Sakuma, On unknotting tunnels for knots, Math. Ann. 289 (1991), no. 1, 143–167. https://doi.org/10.1007/BF01446565
  18. K. Morimoto, M. Sakuma, and Y. Yokota, Examples of tunnel number one knots which have the property “1 + 1 = 3”, Math. Proc. Cambridge Philos. Soc. 119 (1996), no. 1, 113–118 https://doi.org/10.1017/S0305004100074028
  19. K. Morimoto, M. Sakuma, and Y. Yokota, Identifying tunnel number one knots, J. Math. Soc. Japan 48 (1996), no. 4, 667–688. https://doi.org/10.2969/jmsj/04840667
  20. M. Mulazzani, Cyclic presentations of groups and cyclic branched coverings of (1, 1)-knots, Bull. Korean Math. Soc. 40 (2003), no. 1, 101–108. https://doi.org/10.4134/BKMS.2003.40.1.101
  21. H. J. Song and S. H. Kim, Dunwoody 3-manifolds and (1, 1)-decomposiable knots, Proc. Workshop in pure Math. (edited by Jongsu Kim and Sungbok Hong), Vol. 19 (2000), 193–211.
  22. Y. Q. Wu, Incompressibility of surfaces in surgered 3-manifolds, Topology 31 (1992), no. 2, 271–279. https://doi.org/10.1016/0040-9383(92)90020-I
  23. Y. Q. Wu, ${\vartheta}-reducing$ Dehn surgeries and 1-bridge knots, Math. Ann. 295 (1993), no. 2, 319–331. https://doi.org/10.1007/BF01444890
  24. Y. Q. Wu, Incompressible surfaces and Dehn surgery on 1-bridge knots in handlebodies, Math. Proc. Cambridge Philos. Soc. 120 (1996), no. 4, 687–696. https://doi.org/10.1017/S030500410000164X

Cited by

  1. On the Polynomial of the Dunwoody (1, 1)-knots vol.52, pp.2, 2012, https://doi.org/10.5666/KMJ.2012.52.2.223
  2. Comparison and correlation of physical properties from the plain and slope sediments in the Ulleung Basin, East Sea (Sea of Japan) vol.19, pp.5, 2001, https://doi.org/10.1016/S1367-9120(00)00062-6
  3. Chirp (2–7 kHz) echo characters and geotechnical properties of surface sediments in the Ulleung Basin, the East Sea vol.3, pp.4, 1999, https://doi.org/10.1007/BF02910492
  4. The Dual and Mirror Images of the Dunwoody 3-Manifolds vol.2013, 2013, https://doi.org/10.1155/2013/103209