DOI QR코드

DOI QR Code

Li Ion Diffusivity and Rate Performance of the LiFePO4 Modified by Cr Doping

  • Park, Chang-Kyoo (Department of Materials Science and Engineering, Korea University) ;
  • Park, Sung-Bin (Department of Materials Science and Engineering, Korea University) ;
  • Shin, Ho-Chul (Energy Materials Lab, R&D center) ;
  • Cho, Won-Il (Advanced Battery Center, Korea Institute of Science and Technology) ;
  • Jang, Ho (Department of Materials Science and Engineering, Korea University)
  • Received : 2010.09.30
  • Accepted : 2010.11.11
  • Published : 2011.01.20

Abstract

This study reports the root cause of the improved rate performance of $LiFePO_4$ after Cr doping. By measuring the chemical diffusion coefficient of lithium ($D_{Li}$) using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), the correlation between the electrochemical performance of $LiFePO_4$ and Li diffusion is acquired. The diffusion constants for $LiFePO_4$/C and $LiFe_{0.97}Cr_{0.03}PO_4$/C measured from CV are $2.48{\times}10^{-15}$ and $4.02{\times}10^{-15}cm^2s^{-1}$, respectively, indicating significant increases in diffusivity after the modification. The difference in diffusivity is also confirmed by EIS and the $D_{Li}$ values obtained as a function of the lithium content in the cathode. These results suggest that Cr doping facilitates Li ion diffusion during the charge-discharge cycles. The low diffusivity of the $LiFePO_4$/C leads to the considerable capacity decline at high discharge rates, while high diffusivity of the $LiFe_{0.97}Cr_{0.03}PO_4$/C maintains the initial capacity, even at high C-rates.

Keywords

References

  1. Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144, 1188. https://doi.org/10.1149/1.1837571
  2. MacNeil, D. D.; Lu, Z.; Chen, Z.; Dahn, J. R. J. Power Sources. 2002, 108, 8. https://doi.org/10.1016/S0378-7753(01)01013-8
  3. Takahashi, M.; Tobishima, S. I.; Takei, K.; Sakurai, Y. Solid State Ionics 2002, 148, 283. https://doi.org/10.1016/S0167-2738(02)00064-4
  4. Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; Okada, S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144, 1609. https://doi.org/10.1149/1.1837649
  5. Takahashi, M.; Tobishima, S.; Takei, K.; Sakurai, Y. J. Power Sources 2001, 97/98, 508. https://doi.org/10.1016/S0378-7753(01)00728-5
  6. Barker, J.; Saidi, M. Y.; Swoyer, J. L. Electrochem. Solid-State Lett. 2003, 6, A53. https://doi.org/10.1149/1.1544211
  7. Andersson, A. S.; Kalska, B.; Haggstrom, L.; Thomas, J. O. Solid State Ionics 2000, 130, 41. https://doi.org/10.1016/S0167-2738(00)00311-8
  8. Ravet, N.; Chouinard, Y.; Magnan, J. F.; Besner, S; Gauthier, M.; Armand, M. J. Power Sources 2001, 97-98, 503. https://doi.org/10.1016/S0378-7753(01)00727-3
  9. Prosini, P. P.; Zane, D.; Pasquali, M. Electrochim. Acta 2001, 46, 3517. https://doi.org/10.1016/S0013-4686(01)00631-4
  10. Huang, H.; Yin, S. C.; Nazar, L. F. Electrochem, Solid State Lett. 2001, 4, A170. https://doi.org/10.1149/1.1396695
  11. Chen, Z.; Dahn, J. R. J. Electrochem. Soc. 2002, 149, A1184. https://doi.org/10.1149/1.1498255
  12. Chung, S. Y.; Bloking, J. T.; Chiang, Y. M. Nat. Mater. 2002, 1, 123. https://doi.org/10.1038/nmat732
  13. Shi, S.; Liu, L.; Ouyang, C.; Wang, D. S.; Wang, Z.; Chen, L.; Huang, X. Phys. Rev. B 2003, 68, 1.
  14. Wang, D.; Li, H.; Shi, S.; Huang, X.; Chen, L. Electrochem. Acta 2005, 50, 2955. https://doi.org/10.1016/j.electacta.2004.11.045
  15. Wang, G. X.; Bewlay, S.; Needham, S. A. J. Electrochem. Soc. 2006, 153, A25. https://doi.org/10.1149/1.2128766
  16. Prosini, P. P.; Lisi, M.; Zane, D.; Pasquali, M. Solid State Ionics 2002, 148, 45. https://doi.org/10.1016/S0167-2738(02)00134-0
  17. Yu, D. Y. W.; Fietzek, C.; Weydanz, W.; Donoue, K. J. Electrochem. Soc. 2007, 154, A253. https://doi.org/10.1149/1.2434687
  18. Kumar, A.; Thomas, R.; Karan, N. K.; Saavedra-Arias, J. J. J. Nanotechnology 2009, 2009, 10
  19. Bard, A. J.; Faulkner, L. R. Electrochemical Methods; John Wiley & Sons, Inc.: New York, 1980.
  20. Morgan, D.; Van der Ven, A.; Cedar, G. Electrochem. Solid-State Lett. 2004, 7, A30. https://doi.org/10.1149/1.1633511
  21. Ouyang, C.; Shi, S.; Wang, Z.; Huang, X.; Chen, L. Phys. Rev. B 2004, 69, 1.
  22. Ho, C.; Raistrick, I. D.; Huggins, R. A. J. Electrochem. Soc. 1980, 127, 343. https://doi.org/10.1149/1.2129668
  23. Zhu, Y.; Wang, C. J. Phys. Chem. C 2010, 114, 2830. https://doi.org/10.1021/jp9113333
  24. Meethong, N.; Kao, Y. h.; Speakman, S. A.; Chiang, Y. M. Adv. Funct. Mater. 2009, 19, 1060. https://doi.org/10.1002/adfm.200801617
  25. Jaffe, K. Oxidation of Metals; Plenum Press: 1965.
  26. Shin, H. C.; Park, S. B.; Jang, H. Electrochim. Acta 2008, 53, 7946. https://doi.org/10.1016/j.electacta.2008.06.005

Cited by

  1. /Carbon Composite Nanofibers As Stable and Binder-Free Cathodes for Rechargeable Lithium-Ion Batteries vol.4, pp.3, 2012, https://doi.org/10.1021/am201527r
  2. (0 > x > 0.3) as Cathode Materials for Lithium Ion Batteries vol.34, pp.1, 2013, https://doi.org/10.5012/bkcs.2013.34.1.89
  3. Structure, conductive mechanism and electrochemical performances of LiFePO4/C doped with Mg2+, Cr3+ and Ti4+ by a carbothermal reduction method vol.38, pp.2, 2014, https://doi.org/10.1039/c3nj01285a
  4. Effects of particle size and carbon coating on electrochemical properties of LiFePO4/C prepared by hydrothermal method vol.49, pp.20, 2014, https://doi.org/10.1007/s10853-014-8395-9
  5. Impact of incorporation of chromium on electrochemical properties of LiFePO4/C for Li-ion batteries vol.33, pp.4, 2015, https://doi.org/10.1515/msp-2015-0087
  6. A surface-engineered tape-casting fabrication technique toward the commercialisation of freestanding carbon nanotube sheets vol.5, pp.36, 2017, https://doi.org/10.1039/C7TA04999D
  7. /C via Cr doping vol.7, pp.54, 2017, https://doi.org/10.1039/C7RA03028B
  8. anode materials by carbon additive vol.19, pp.4, 2015, https://doi.org/10.1179/1433075X14Y.0000000237
  9. Revisiting Electrochemical Techniques to Characterize the Solid-State Diffusion Mechanism in Lithium-Ion Batteries vol.0, pp.0, 2019, https://doi.org/10.1515/ijcre-2018-0095
  10. /RGO composites synthesized by a solid phase combined with carbothermal reduction method vol.528, pp.1, 2018, https://doi.org/10.1080/10962247.2018.1448185
  11. Plate-like LiFePO4 crystallite with preferential growth of (010) lattice plane for high performance Li-ion batteries vol.4, pp.11, 2011, https://doi.org/10.1039/c3ra45755a
  12. Phonons, lithium diffusion and thermodynamics of LiMPO4 (M = Mn, Fe) vol.2, pp.35, 2014, https://doi.org/10.1039/c4ta01291g
  13. Facile Method to Prepare for the Ni2P Nanostructures with Controlled Crystallinity and Morphology as Anode Materials of Lithium-Ion Batteries vol.3, pp.7, 2018, https://doi.org/10.1021/acsomega.8b00482
  14. Preparation and Electrochemical Properties of the Spongelike Melamine Formaldehyde-Poly(vinyl alcohol)/LiFePO4 Porous Composite as the Lithium-Battery Cathode vol.58, pp.2, 2011, https://doi.org/10.1021/acs.iecr.8b03599
  15. Effect of the Secondary Rutile Phase in Single‐Step Synthesized Carbon‐Coated Anatase TiO 2 Nanoparticles as Lithium‐Ion Anode Material vol.9, pp.4, 2021, https://doi.org/10.1002/ente.202001067