DOI QR코드

DOI QR Code

Full Geometry Optimizations of Bond-Stretch Isomers of C202+ Fullerene Dication by the Hybrid Density Functional B3LYP Methods

  • Lee, Ji-Hyun (Department of Chemistry, Nanoscale Sciences and Technology Institute, and BK21 Project, Wonkwang University) ;
  • Lee, Chang-Hoon (Department of Chemistry, Nanoscale Sciences and Technology Institute, and BK21 Project, Wonkwang University) ;
  • Park, Sung-S. (Corporate R & D Center, Samsung SDI Co. Ltd.) ;
  • Lee, Kee-Hag (Department of Chemistry, Nanoscale Sciences and Technology Institute, and BK21 Project, Wonkwang University)
  • Received : 2010.11.20
  • Accepted : 2010.12.30
  • Published : 2011.01.20

Abstract

We studied the relative stability and atomic structure of five $C_{20}^{2+}$ isomers obtained by two-electron ionization of a $C_{20}$ cage (the smallest fullerene). All the isomers are bond-stretch isomers, i.e., they differ in bond length. In particular, in one of the isomers with Ih symmetry, all the bond lengths are equal. Full geometry optimizations of the dipositive ion $C_{20}^{2+}$ were performed using the hybrid density functional (B3LYP/6-31G(d)) methods. All isomers were found to be true minima by frequency analysis at the level of B3LYP/6-31G(d) under the reinforced tight convergence criterion and a pruned (99,590) grid. The zero-point correction energy for the cage bond-stretch isomers was in the increasing order $D_{2h}<C_{2h}<C_2<T_h<I_h$ of $C_{20}^{2+}$. The energy difference among the isomers of cage dipositive ions was less than that among neutral cage isomers. Our results suggest that these isomers show bond-stretch isomerism and that they have an identical spin state and an identical potential energy curve. Although the predominant electronic configurations of the isomers are similar, the frontier orbital characteristics are different, implying that we could anticipate an entirely different set of characteristic chemical reactions for each type of HOMO and LUMO.

Keywords

References

  1. Stohrer, W.-D.; Hoffmann, R. J. Am. Chem. Soc. 1972, 94, 1661. https://doi.org/10.1021/ja00760a039
  2. Chatt, J.; Manojlovic-Muir, L.; Muir, K. W. J. Chem. Soc. D 1971, 655.
  3. Mayer, J. M. Angew. Chem. Int. Ed. Engl. 1992, 31, 286. https://doi.org/10.1002/anie.199202861
  4. Parkin, G.; Hoffmann, R. Angew. Chem. Int. Ed. Engl. 1994, 33, 1462. https://doi.org/10.1002/anie.199414621
  5. Gutlich, P.; Goodwin, H. A.; Hendrickson, D. N. Angew. Chem. Int. Ed. Engl. 1994, 33, 425. https://doi.org/10.1002/anie.199404251
  6. Wei, H.; Hrovat, D. A.; Dolbier, W. R., Jr.; Smart, B. E.; Borden, W. T. Angew. Chem. 2007, 119, 2720. https://doi.org/10.1002/ange.200604574
  7. Austin, S. J.; Baker, J.; Fowler, P. W.; Manolopoulos, D. E. J. Chem. Soc. Perkin Trans. 1994, 2, 2319.
  8. Kroto, H. W.; Allef, A. W.; Blum, S. P. Chem. Rev. 1991, 91, 1213. https://doi.org/10.1021/cr00006a005
  9. Kroto, H. W.; Heath, J. R.; Obrien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162. https://doi.org/10.1038/318162a0
  10. Helden, A. Von.; Hsu, M. T.; Gotts, N. G.; Kemper, P. K.; Bowers, M. T. Chem. Lett. 1993, 204, 15. https://doi.org/10.1016/0009-2614(93)85599-J
  11. Handschuh, H.; Gantetor, G.; Kesslet, B.; Bechthold, P. S.; Ebhardt, W. Phys. Rev. Lett. 1995, 74, 1095. https://doi.org/10.1103/PhysRevLett.74.1095
  12. Prinzbach, H.; Weiler, A.; Landenberer, P.; Wahl, F.; Worth, J.; Scott, L. T.; Gelmont, M.; Olevano, D.; Issendorff, B. von. Nature 2000, 407, 60. https://doi.org/10.1038/35024037
  13. Prinzbach, H.; Wahl, F.; Weiler, A.; Landenberer, P.; Worth, J.; Scott, L. T.; Gelmont, M.; Olevano, D.; Sommer, F.; Issendorff, B. von. Chem. Eur. J. 2006, 12, 6268. https://doi.org/10.1002/chem.200501611
  14. Parasuk, V.; Almlof, J. Chem. Phys. Lett. 1991, 184, 187. https://doi.org/10.1016/0009-2614(91)87185-E
  15. Galli, G.; Gygi, F.; Golaz, J. C. Phys. Rev. B 1998, 57, 1860. https://doi.org/10.1103/PhysRevB.57.1860
  16. Martin, J. M. L.; El-Yazal, J.; Francois, J.-P. Chem. Phys. Lett. 1996, 248, 345. https://doi.org/10.1016/0009-2614(95)01334-2
  17. Wang, Z.; Day, P.; Pachtez, R. Chem. Phys. Lett. 1996, 248, 121. https://doi.org/10.1016/0009-2614(95)01299-0
  18. Sokolova, S.; Luchow, A.; Anderson, J. B. Chem. Phys. Lett. 2000, 323, 229. https://doi.org/10.1016/S0009-2614(00)00554-6
  19. Taylor, P. R.; Bylaska, E.; Weare, J. H.; Kawai, R. Chem. Phys. Lett. 1995, 235, 558. https://doi.org/10.1016/0009-2614(95)00161-V
  20. Zhang, C.; Sun, W.; Cao, Z. J. Chem. Phys. 2007, 126, 144306. https://doi.org/10.1063/1.2716642
  21. Raghavachari, K.; Strout, D. L.; Odom, G. K.; Scuseria, G. E.; Pople, J. A.; Johnson, B. G.; Gill, D. W. Chem. Phys. Lett. 1993, 214, 357. https://doi.org/10.1016/0009-2614(93)85650-D
  22. An, W.; Gao, Y.; Bulusu, S.; Zeng, X. C. J. Chem. Phys. 2005, 122, 204109. https://doi.org/10.1063/1.1903946
  23. Paulus, B. Phys. Chem. Chem. Phys. 2003, 5, 3364. https://doi.org/10.1039/b304539k
  24. Wang, Z.; Lian, K.; Pan, S.; Fan, X. J. Comput. Chem. 2005, 26, 1279. https://doi.org/10.1002/jcc.20268
  25. Saito, M.; Miyamoto, Y. Phys. Rev. Lett. 2001, 87, 035503-1. https://doi.org/10.1103/PhysRevLett.87.035503
  26. Lee, W. R.; Lee, C.; Kang, J.; Park, S. S.; Hwang, Y. G.; Lee, K. H. Bull. Korean Chem. Soc. 2009, 30, 445. https://doi.org/10.5012/bkcs.2009.30.2.445
  27. Poklonskii, N. A.; Kislyakov, E. F.; Bubel’, O. N.; Vyrko, S. A. J. Appl. Spec. 2002, 3, 323.
  28. Kleinpeter, E.; Koch, A. J. Mol. Struct. (Theochem) 2010, 939, 1. https://doi.org/10.1016/j.theochem.2009.09.018
  29. Chen, Z.; Jiao, H.; Hirsch, A.; Thiel, W. J. Mol. Model. 2001, 7, 161. https://doi.org/10.1007/s008940100021
  30. Hirsch, A.; Chen, Z.; Jiao, H. Angew. Chem., Int. Ed. 2000, 39, 3915. https://doi.org/10.1002/1521-3773(20001103)39:21<3915::AID-ANIE3915>3.0.CO;2-O
  31. Chen, Z.; Jiao, H.; Buhl, M.; Hirsch, A. Theor. Chem. Acc. 2001, 106, 352. https://doi.org/10.1007/s002140100284
  32. Lu, X.; Chen, Z. Chem. Rev. 2005, 105, 3643. https://doi.org/10.1021/cr030093d
  33. Moran, D.; Simmonett, A. C.; Leach, F. E., III.; Allen, W. D.; Schleyer, P. v. R.; Schaefer III, H. F. J. Am. Chem. Soc. 2006, 128, 9342. https://doi.org/10.1021/ja0630285
  34. Shi, Q.; Kais, S. Mol. Phys. 2002, 100, 475. https://doi.org/10.1080/00268970110086327
  35. Beck, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  36. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. A 1988, 37, 785.
  37. Stephen, P. J.; Devlin, F. J.; Chablowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623. https://doi.org/10.1021/j100096a001
  38. Herteing, R. H.; Koch, W. Chem. Phys. Lett. 1997, 268, 345. https://doi.org/10.1016/S0009-2614(97)00207-8
  39. Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257. https://doi.org/10.1063/1.1677527
  40. Frisch, M. J. et al. A Gaussian 03 B.04, Gaussian, Inc., Pitttsburgh, PA., 2003.
  41. Clark, T. R.; Koch, R. The Chemist’s Electronic Book of Orbitals; Springer-Verlag: Berlin, 1999.

Cited by

  1. (X = H, F, Cl, Br, and OH) by the Hybrid Density-Functional B3LYP Method vol.32, pp.9, 2011, https://doi.org/10.5012/bkcs.2011.32.9.3372
  2. Regioisomers (X = F, Cl, Br, or OH) vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.641