DOI QR코드

DOI QR Code

Design of S-Shaped Path and Velocity Profile of Moving Stage Using Three Point Locations

3 점을 이용한 이동 무대의 S 곡선 경로 설계

  • Jung, Kwang-Oh (Graduate School of NID Fusion Technology) ;
  • Oh, Se-Kyu (Nano Manufacturing Device, Seoul Nat'l Univ. of Technology) ;
  • Kim, Dong-Hwan (School of Mechanical Design &Automation Engineering, Seoul Nat'l Univ. of Technology)
  • 정광오 (NID 융합기술대학원 나노 IT 융합프로그램) ;
  • 오세규 (서울산업대학교 나노생산기술연구소) ;
  • 김동환 (서울산업대학교 기계설계자동화공학부)
  • Received : 2010.06.15
  • Accepted : 2010.11.22
  • Published : 2011.01.01

Abstract

An exact curved path has to be fixed and velocity profile for travelling on the curved path is required by a moving stage. In this study, we decide the curved path on the basis of the information on three point locations. The path of the moving stage is traced by simulating the designed curve path and the velocity profile, and the results are compared with the given three points to determine how closely the moving stage follows the given path. Further, we propose a method to calibrate a curved path and velocity profile. The proposed moving paths were evaluated by performing experiments. Finally, the designed curved path and the actual path were compared.

이동 무대의 곡선 주행에 있어서 정확한 곡선경로와 양쪽 바퀴의 속도프로파일이 필요하다.본 논문에서 이동을 할 3 점의 위치 정보를 이용하여 곡선경로 생성하는 방법을 제안 한다. 설계된 곡선경로와 속도 프로파일을 이용하여 이동무대의 궤적을 시뮬레이션 하였고 이에 따라 결과와 3 점의 위치 정보와 비교하여 곡선 경로와 바퀴 속도 프로파일을 보정하는 방법을 제안하였다. 이동무대 하드웨어를 구현 후 곡선 주행 실험을 하였고 설계된 곡선경로와 이동무대의 실제궤적을 비교 분석 하였다.

Keywords

References

  1. Ahmad, A. M. and Mohamed M. B., 1993, "Robot Navition Using the Vector Potential Approach,” IEEE, p. 805.
  2. Latombe, J. C., 1991, “Robot Motion Planning,” Kluwer Academic Publishers.
  3. Charles, E. T., 1984, "Path Relaxation: Path Planning for a Mobile Robot,” OCEANS'84, pp. 35-40.
  4. Stentz, A., 1993, “Optimal and Efficient Path Planning for Unknown and Dynamic Environments,” Carnegie Mellon Robotics Institute Technical Report CMU-RI-TR-93-20.
  5. Han, S. S., Choi, B. S. and Lee, J. M., 2008, “A Precise Curved Motion Planning for a Differential Driving Mobile Robot,” Mechatronics, Vol. 18, pp. 1-9. https://doi.org/10.1016/j.mechatronics.2007.09.004
  6. Wei, S. and Zefran, M., 2005 “Smooth Path Planning nd Control for Mobile Robots,” IEEE Proc. on Networking, Sensing and Control, pp. 894-899.
  7. Lumelsky, V. J., Mukhopadhyay, S. and Sun, K., 1990, “Dynamic Path Planning in Sensor-Based Terrain Acquisition,” IEEE Transactions on Robotics and Automation, Vol. 6, No. 4, August. https://doi.org/10.1109/70.59357
  8. Lozano-Perez, T., 1983, “Spatial Planning: A Configuration Space Approach,” IEEE Transactions on Computers, Vol. C-32, No. 2, February. https://doi.org/10.1109/TC.1983.1676196
  9. Zelinsky, A., 1992, “A Mobile Robot Exploration Algorithm,” IEEE Transactions on Robotics and Automation, Vol. 8, No. 6, December. https://doi.org/10.1109/70.182671
  10. Ihn, N. G., 1996, “A Global Collision Free Path Planning Using Parametric Parabola Through Geometry Mapping of Obstacles in Robot Work Space,” KSME International Journal, Vol. 10, No. 4, pp. 443-449. https://doi.org/10.1007/BF02942780
  11. Bui, T. H., Chung, T. L. and Kim, S. B., 2003, “Adaptive Tracking Control of Two-Wheeled Welding Mobile Robot with Smooth Curved Welding Path,” KSME International Journal, Vol. 17, No. 11, pp. 1682-1692.
  12. Ihn, N. G., 2004, “Path Space Approach for Planning 2D Shortest Path Based on Elliptic Workspace Geometry Mapping,” KSME International Journal, Vol. 18, No. 1, pp. 92-105.