DOI QR코드

DOI QR Code

Modeling of Multi-Boom Floating Crane for Lifting Analysis of Offshore Wind Turbine

해상 풍력 발전기 리프팅 해석을 위한 해상 크레인 멀티 붐 모델링

  • Park, Kwang-Phil (Ship & Ocean Research Institute, Daewoo Shipbuilding & Marine Engineering, Co., Ltd.) ;
  • Cha, Ju-Hwan (Engineering Research Institute, Seoul Nat'l Univ.) ;
  • Lee, Kyu-Yeul (Dept. of the Naval Architecture and Ocean Engineering, Seoul Nat'l Univ.)
  • 박광필 (대우조선해양 선박해양연구소) ;
  • 차주환 (서울대학교 공학연구소) ;
  • 이규열 (서울대학교 조선해양공학과)
  • Received : 2010.06.16
  • Accepted : 2010.10.19
  • Published : 2011.01.01

Abstract

The dynamic responses of a 5 MW wind turbine lifted by a floating crane with two elastic booms are analyzed. Dynamic equations of motions of a multibody system that consists of a floating crane, two elastic booms, and a wind turbine are derived. The six-degree-of-freedom (DOF) motions for the floating crane and the wind turbine are considered in the equations of motions. The hydrostatic force, the hydrodynamic force due to a regular wave, the mooring force, the wire rope force, and the gravitational force are considered as external forces. By solving the equations numerically, the dynamic responses of cargo are simulated. The simulation results are compared with those in the case of one elastic boom. Finally, the dynamic responses of the wind turbine lifted by the floating crane are analyzed under regular wave condition.

본 논문에서는 해양 풍력발전기를 해상 크레인으로 리프팅하기 위해 두 개의 탄성 붐을 가진 해상 크레인을 모델링 하고 동적 거동을 시뮬레이션 하였다. 운동 방정식은 강체와 탄성체가 포함된 다물체계 동역학을 기반으로 구성하였다. 외력으로는 유체정역학 힘, 규칙파에 의한 유체동역학 힘, 와이어로프의 장력, 계류력, 그리고 중력이 고려되었다. 두 개의 탄성 붐을 사용한 시뮬레이션 결과는 탄성 붐 한 개를 사용한 경우와 비교하여 모델의 타당성을 검증하였다. 5-MW(megawatt)급 해양 풍력 발전기를 해상 크레인이 리프팅하는 경우에 대해 동적 거동을 시뮬레이션하고 그 결과를 분석하였다.

Keywords

References

  1. Fingersh, L., Hand, M. and Laxson, A., 2006, Wind Turbine Design Cost and Scaling Model, Technical Report, NREL 500-40566.
  2. Zhang, S. and Tan, J., 2009, “Introduction of Offshore Wind Turbine Installation,” China Offshore Platform, Vol.24, No.3, pp.35-41.
  3. Su, H. and Sheng, K., 2009, “A Concept Design of Offshore Construction Vessel and the Corresponding Installation Method of Offshore Wind Turbines at Taiwan Area,” Proceeding of Asia-Pacific Technical Exchange and Advisory Meeting on Marine Structures, pp. 133-138.
  4. Talesman Energy, Beatrice Wind Farm Demonstrator Project Scoping Report, http://www.beatricewind.co.uk/.
  5. http://www.scaldis-smc.com/beatricewindfarm.html.
  6. Park, K. P., Cha, J. H. and Lee, K. Y., 2010, “Analysis of Dynamic Response of a Floating Crane and a Cargo with Elastic Booms Based on Flexible Multibody System Dynamics,” Journal of the Society of Naval Architects of Korea, Vol. 47, No. 1, pp. 47-57. https://doi.org/10.3744/SNAK.2010.47.1.047
  7. Cha, J. H., Park, K. P. and Lee, K. Y., 2010, “Numerical Analysis for Nonlinear Static and Dynamic Response of a Floating Crane with Elastic Boom,” Transactions of the Korean Society of Mechanical Engineers A, Vol. 34, No. 4, pp. 501-509. https://doi.org/10.3795/KSME-A.2010.34.4.501
  8. Park, K. P., Cha, J. H. and Lee, K. Y., 2009, “Automation of 3 Dimensional Beam Modeling based on Finite Element Formulation for Elastic Boom of a Floating Crane,” Proceeding of Korean Society of CAD/CAM Engineers, pp. 79-85.
  9. Lee, K. Y., Cha, J. H. and Park, K. P., 2010, “Dynamic Response of a Floating Crane in Waves by Considering the Nonlinear Effect of Hydrostatic Force,” Ship Technology Research, Vol. 57, No. 1, pp. 62-71.
  10. Park, K. P., Cha, J. H. and Lee, K. Y., 2010, “3 Dimensional Dynamic Response Analysis of Floating Crane Considering Finite Element Model of Elastic Boom,” Proceeding of the Korean Society of Mechanical Engineers (Dynamics and Control), pp.18-26.
  11. Jonkman, J., Butterfield, S., Musial, W. and Scott, G., 2009, Definition of a 5-MW Reference Wind Turbine for Offshore System Development, Technical Report, NREL/TP-500-38060.