DOI QR코드

DOI QR Code

Optimizing the Configurations of Cooling Channels with Low Flow Resistance and Thermal Resistance

냉각유로 형상변화에 따른 유동 및 열저항 최적화 연구

  • Cho, Kee-Hyeon (Energy & Resources Research Dept., Research Institute of Industrial Science & Technology (RIST)) ;
  • Ahn, Ho-Seon (Dept. of Mechanical Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Kim, Moo-Hwan (Dept. of Mechanical Engineering, Pohang University of Science and Technology (POSTECH))
  • 조기현 ((재)포항산업과학연구원) ;
  • 안호선 (포항공과대학교 기계공학과) ;
  • 김무환 (포항공과대학교 기계공학과)
  • Received : 2010.02.05
  • Accepted : 2010.11.12
  • Published : 2011.01.01

Abstract

In this study, we investigated the hydrodynamic and thermal performance of constructal architectures on the basis of the mass flow rates for a given pressure drop, and we determined the thermal resistance and flow uniformity. The five flow configuration used in this study were the first construct with optimized hydraulic diameter, the second construct with optimized hydraulic diameter, the first construct with non-optimized hydraulic diameter, second construct with non-optimized hydraulic diameter, and a serpentine configuration. The results of our study suggest that the best fluid-flow structure is the second constructal structure with optimized constructal configurations. We also found that in the case of the optimized structure of cooling plates, the heat transfer was remarkably higher and the pumping power was significantly lower than those of traditional channels.

본 연구에서는 3 차원 전산 열유동해석을 통하여 형상법칙에 근거하여 개발된 냉각판의 열수력학적인 특성을 분석하였다. 서펜타인 형상을 포함하여 최적화, 최적화되지 않은 1, 2 차 형상 총 5 개 형상을 대상으로 동일한 구속조건을 부여함으로써 유동저항, 열저항 및 분지유로에서의 유동균일도를 상호 비교함으로써 냉각판의 성능평가를 수행하였다. 그 결과, 최적화된 1, 2 차 형상 구조가 최적화되지 않은 경우와 비교하여 훨씬 적은 압력손실을 나타내었으며, 압력손실을 기준으로 최적화된 2 차 형상 구조가 가장 우수한 유동 구조를 나타내었다. 또한, 최적화된 1, 2 차 형상구조의 열저항 및 유동 분배성능도 기존에 사용되는 유로형상과 비교하여 모두 우수한 성능을 보였다.

Keywords

References

  1. Tuckerman, D. B. and Pease, R. F., 1981, “High Performance Heat Sinking for VLSI,” IEEE Electronic Device Letters, Vol. 2, No. 5, pp. 126-129. https://doi.org/10.1109/EDL.1981.25367
  2. Duncan, A. B. and Peterson, G. P., 1994, “Review of Microscale Heat Transfer,” Appl. Mech. Rev., Vol. 47, pp. 397-428. https://doi.org/10.1115/1.3111085
  3. Jang, S. P. and Kim ,S. J., 2005, “Fluid Flow and Thermal Characteristics of a Microchannel Heat Sink Subject to an Impinging Air Jet, Transactions of the ASME,” Vol. 127, pp. 770-779. https://doi.org/10.1115/1.1924628
  4. Kim, D. K. and Kim, S. J., 2007, “Closed-Form Correlations for Thermal Optimization of Microchannels,” Int. J. Heat Mass Transfer, Vol. 50, pp. 5318-5322. https://doi.org/10.1016/j.ijheatmasstransfer.2007.07.034
  5. Pence, Deborah V., 2002, “Reduce Pumping Power and Wall Temperature in Microchannel Heat Sinks with Fractal-Like Branching Channel Networks,” Microscale Thermophysical Eng., Vol. 6, pp. 319-330. https://doi.org/10.1080/10893950290098359
  6. Bejan, A., 1997, Advanced Engineering Thermodynamics, 2nd ed., Wiley, New York, pp. 704-814.
  7. Bejan, A., 2000, Shape and Structure: from Engineering to Nature, Cambridge University Press, Cambridge, UK, pp. 1-314.
  8. Lee, J., Kim, S., Lorente, S. and Bejan, A., 2008, “Vascularization with Trees Matched Canopy to Canopy: Diagonal Channels with Multiple Sizes,” Int. J. Heat Mass Transfer, Vol. 51, pp. 2029-2040. https://doi.org/10.1016/j.ijheatmasstransfer.2007.06.015
  9. Cho, K., Lee, J., Kim, M. and Bejan, A., 2009, “Vascular Design of Constructal Structures with Low Flow Resistance and Nonuniformtiy,” Int. J. Therm. Sci., Vol. 49, pp. 2309-2318.
  10. Lorente, S. and Bejan, A., 2005, ”Svelteness, Freedom Morph, and Constructal Multiscale Flow Structures,” Int. J. Therm. Sci., Vol. 44, pp. 1123-1130. https://doi.org/10.1016/j.ijthermalsci.2005.08.011
  11. FLUENT, Version 6.3, User’s Manual, ANSYS Inc.
  12. Choi, J., Kim, Y., Lee, Y., Lee, K. and Kim,Y., 2008, “Numerical Analysis on the Performance of Cooling Plates in a PEFC,” J. Mech. Sci Tech. Vol. 22, pp. 1417-142. https://doi.org/10.1007/s12206-008-0409-6

Cited by

  1. Analytical, Numerical, and Experimental Comparison of the Performance of Semicircular Cooling Plates vol.35, pp.12, 2011, https://doi.org/10.3795/KSME-B.2011.35.12.1325