DOI QR코드

DOI QR Code

Visualization of Natural Convection Heat Transfer on Horizontal Cylinder Using the Copper Electroplating System

전기도금계를 이용한 수평관 외부 자연대류의 시각화

  • Heo, Jeong-Hwan (Dept. of Nuclear and Energy Engineering, Jeju Nat'l Univ.) ;
  • Chung, Bum-Jin (Dept. of Nuclear and Energy Engineering, Jeju Nat'l Univ.)
  • 허정환 (제주대학교 에너지공학과) ;
  • 정범진 (제주대학교 에너지공학과)
  • Received : 2010.05.19
  • Accepted : 2010.11.23
  • Published : 2011.01.01

Abstract

Natural convection heat transfer phenomena on a horizontal cylinder have been studied experimentally in order to investigate the applicability of analogy experimental methodology using a copper electroplating system and to visualize the local heat transfer rates depending on the angular position and the diameter of the horizontal cylinder. In the copper electroplating system, the copper ion produced at the anode moves by convection and diffusion to the cathode and reduces at the cathode, representing the heat transfer. By using aluminum cathode with a distinguishable color, the amount of copper plated could visualize the amount of heat transferred depending on the angular position of the cylinder. The diameter of the cylinder is varied from 0.01m to 0.15m, which correspond to Rayleigh numbers in the range of $1.73{\times}10^7$ to $5.69{\times}10^{11}$. The test results are in good agreement with existing heat transfer correlations.

수평관 외부에서 발생하는 자연대류 열전달 현상을 실험적으로 연구하였다. 연구의 목적은 구리 도금계를 채택한 유사성실험방법론이 적용가능한지 확인하는 것과 수평관의 지름과 각도에 따라 달라지는 국부열전달을 시각화하는 것이었다. 구리의 전기도금계를 사용하면 양극에서 생성된 구리이온은 대류와 확산을 통하여 음극으로 이동되어 환원되는데 이는 열전달을 모사하게 된다. 구리와 색깔이 다른 알루미늄을 음극으로 채택함으로써 각도에 따라 환원되어 석출된 구리의 양을 시각화 할 수 있었다. 수평관의 직경은 0.01m에서 0.15m이었고 이는 $Ra_D\;=\;1.73{\times}10^7\;{\sim}\;5.69{\times}10^{11}$에 해당한다. 실험결과는 기존에 알려진 열전달 상관식과 일치하였다. 알루미늄 음극에 도금된 구리의 패턴은 Kitamura에 의해 액체결정온도측정법으로 시각화한 결과와 매우 잘 일치 하였다.

Keywords

References

  1. Reymond, O., Murray, D. B. and O’Donovan, T. S., 2008, "Natural Convection Heat Transfer from Two Horizontal Cylinders," Experimental Thermal and Fluid Science, Volume 32, Iss. 8, pp. 1702-1709 https://doi.org/10.1016/j.expthermflusci.2008.06.005
  2. Merk, H. L. and Prins, j. A., 1953-54, "Thermal Convection in Laminar Boundary Layers I, II, and III," Appl. sci. res., A4, 11-24, pp. 195-206, 207-221
  3. Mahmoudi, S. R. and Adamiak, K., 2010, "The Effect of Corona Discharge on Free Convection Heat Transfer from a Horizontal Cylinder," Experimental Thermal and Fluid Science, Vol. 34, Iss. 5, pp. 528-537 https://doi.org/10.1016/j.expthermflusci.2009.11.006
  4. Kuehn, T.H. and Goldstein, R.J., 1980, "Numerical Solution to the Navier–Stokes Equations for Laminar Natural Convection About a Horizontal Isothermal Circular Cylinder," Int. J. Heat Mass Transfer, Vol. 23, pp. 971-979. https://doi.org/10.1016/0017-9310(80)90071-X
  5. Yamamoto, S., Niiyamaa, D. and Shin, B. R., 2004, "A Numerical Method For Natural Convection and Heat Conduction Around and in a Horizontal Circular Pipe," International Journal of Heat and Mass Transfer, Vol. 47, Iss. 26, pp. 5781-5792 https://doi.org/10.1016/j.ijheatmasstransfer.2004.06.039
  6. Kitamura, K., Kami-iwa, F. and Misumi, T., 1999, "Heat Transfer and Fluid Flow of Natural Convection Around Large Horizontal Cylinders," International Journal of Heat and Mass Transfer, Vol. 42 Iss. 22, pp. 4093-4106 https://doi.org/10.1016/S0017-9310(99)00079-4
  7. Farouk, B. and Guceri, S.I., 1982, "Natural Convection from a Horizontal Cylinder-Turbulent Regime," Trans. ASME, J. Heat Transfer Vol. 104 pp. 228-235. https://doi.org/10.1115/1.3245077
  8. Hattori, Y., 1996, "Turbulent Natural Convection Boundary Layer Around Horizontal Cylinder," Proceedings of National Heat Transf. Conference of Japan (special issue), Vol. 33 pp. 853-854.
  9. McAdams, W. H., 1954, Heat Transmission, 3rd ed., McGraw-Hill, New York, pp. 175-177.
  10. Morgan, V.T., 1975, "The Overall Convective Heat Transfer from Smooth Circular Cylinders, in: T.F. Irvine Jr, J.P. Hartnett (Eds.)," Advances in Heat Transfer, Vol. 11, Academic Press, New York, pp. 199-210.
  11. Churchill, S.W. and Chu, H.S., 1974, "Correlation Equations for Laminar and Turbulent Free Convection from a Horizontal Cylinder," Int. J. Heat Mass Transfer, Vol. 18, pp. 1049-1053. https://doi.org/10.1016/0017-9310(75)90222-7
  12. Bejan, A., 1994, "convection Heat Transfer," 2nd., John Wiley & Sons, INC, New York, pp. 466-514.
  13. Ko S.-H., Moon, D.-W. and Chung, B.-J., 2006, "Applications of Electroplating Method for Heat Transfer Studies Using Analogy Concept," Nuclear Engineering and Technology, Vol. 38, pp. 251-258
  14. Levich, V. G., 1962, Physicochemical Hydrodynamics, Prentice-Hall, Englewood.
  15. Selman, J. R. and Tobias, C. W., 1978, "Mass Transfer Measurement by the Limiting Current Technique," Adv. Chem. Eng. Vol. 10, pp. 211-318 https://doi.org/10.1016/S0065-2377(08)60134-9
  16. Kang, K.-U. and Chung, B.-J. 2010, "The Effects of the Anode Size and Position on the Limiting Currents of Natural Convection Mass Transfer Experiments in a Vertical Pipe," Trans. of the KSME, Vol. 34, No. 1, pp. 1-8. https://doi.org/10.3795/KSME-B.2010.34.1.1
  17. Ko, B.-J. and Chung, B.-J., 2010, "Study on the Laminar Mixed Convection of Developing Flow in a Vertical Pipe," Trans. of the KSME(B), Vol. 34, No. 5. pp. 481-489. https://doi.org/10.3795/KSME-B.2010.34.5.481

Cited by

  1. A Preliminary Experiment for Rayleigh-Benard Natural Convection for Severe Accident Condition vol.21, pp.3, 2012, https://doi.org/10.5855/ENERGY.2012.21.3.254
  2. An experimental study on the transition criteria of open channel natural convection flows vol.26, pp.4, 2012, https://doi.org/10.1007/s12206-012-0203-3
  3. Effect of Horizontal Pitch-to-Diameter Ratio on the Natural-Convection Heat Transfer of Two Staggered Cylinders vol.36, pp.3, 2012, https://doi.org/10.3795/KSME-B.2012.36.3.259
  4. The Effect of Pitch-to-Diameter Ratio on Natural Convection Heat Transfer of Two In-Line Horizontal Cylinders vol.35, pp.4, 2011, https://doi.org/10.3795/KSME-B.2011.35.4.417