DOI QR코드

DOI QR Code

Study on Characterization of Solid Oxide Fuel Cell Subjected to Load Treatments

로드 조건에 따른 고체산화물 연료전지 전극 활성화 분석연구

  • Ahn, Kwon-Sung (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.) ;
  • Choi, Hoon (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.) ;
  • Cha, Suk-Won (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.)
  • 안권성 (서울대학교 기계항공공학부) ;
  • 최훈 (서울대학교 기계항공공학부) ;
  • 차석원 (서울대학교 기계항공공학부)
  • Received : 2010.05.26
  • Accepted : 2010.07.05
  • Published : 2011.01.01

Abstract

Evidence on the effect of $O_2$ reduction or current passage on the microstructure and morphology of the LSM and Ni-YSZ electrodes in solid oxide fuel cells. The microstructures of the electrodes were characterized as plate-like agglomerates. Current of $0.1\;A/cm^2$, $0.2\;A/cm^2$, $0.3\;A/cm^2$, at $800^{\circ}C$ were passed for 3 h. Then, we observed the cell structure and measured the cell performance before and after the experiment. There are changed with the load condition. The TPB of the cell increased when the cell structure changed. In particular, the decrease in activation loss is apparent as load increased. As a result, cell performance improved, and we confirmed that a optimal load condition existed.

고체산화물 연료전지의 전극인 LSM 과 Ni-YSZ 의 미세구조와 형태가 환원 및 로드조건에 영향을 받는다. 초기 전극구조는 평판 형 덩어리 모양을 띈다. 로드 조건을 $0.1A/cm^2$, $0.2A/cm^2$, $0.3A/cm^2$로 각각 3 시간 동안 주고 실험 전, 후로 각각의 셀 성능 및 구조 변화를 관찰했다. 각각의 로드에 따라 그 셀 구조가 다양하게 변화된다. 이런 변형들로 인해 전극의 구조변화가 생기고 그로 인해 삼상계면의 증가된다. 특히 활성면적 증가에 따른 전지의 활성화 손실의 감소가 로드조건에 비례해서 두드러지게 나타난다. 이로 인해 전지의 성능이 향상 되며 전지에 대한 최적의 로드조건이 존재함을 확인할 수 있었다.

Keywords

References

  1. O’Hayre, R., Cha, S.-W., Colella, W. and Prinz, F. B., 2006, FUEL CELL FUNDAMENTALS, John Wiley and Sons, New York, pp. 209-224
  2. Jorgensen, M.J., Primdahl, S., Bagger, C. and Mogensen, M., 2001, “Effect of Sintering Temperature on Microstructure and Performance of LSM-YSZ Composite Cathodes,” Solid State Ionics 139, pp. 1-11 https://doi.org/10.1016/S0167-2738(00)00818-3
  3. Sun, W., Huang, X., Lő, Z., Zhao, L., Wei, B., Li, S., Chen, K., Ai, N. and Su, W., 2009, “NiO+YSZ Anode Substrate for Screen-Printing Fabrication of YSZ Electrolyte Film in Solid Oxide Fuel Cell,” Journal of Physicals and Chemistry of Solids 70, pp. 164-168 https://doi.org/10.1016/j.jpcs.2008.09.019
  4. Jiang, S.P. and Love, J.G., 2003, “Observation of Structural Change Induced by Cathodic Polarization on $(La,Sr)MnO_3$ Electrodes of Solid Oxide Fuel Cells,” Solid State Ionics 158, pp. 45-53 https://doi.org/10.1016/S0167-2738(02)00760-9
  5. Haider, M. A., Vance, A. A. and McIntosh, S., 2009, “Activation of LSM-Based SOFC Cathodes-Dependence of Mechanism on Polarization Time,” Trans. of the ECS, Vol. 25, No. 2, pp. 2293-2299
  6. Liu, Y.L., Hagen, A., Barfod, R., Chen, M., Wang, H.J., Poulsen, F.W. and Hendriksen, P.V., 2009, “Microstructural Studies on Degradation of Interface Between LSM-YSZ Cathode and YSZ Electrolyte in SOFCs,”Solid State Ionics180, pp. 1298-1304 https://doi.org/10.1016/j.ssi.2009.07.011
  7. Backhaus-Ricoult, M., 2006, “Inteface Chemistry in LSM-YSZ Composite SOFC Cathode,”Solid State Ionics177, pp. 2195-2200 https://doi.org/10.1016/j.ssi.2006.08.011