Estimation of Internal Motion for Quantitative Improvement of Lung Tumor in Small Animal

소동물 폐종양의 정량적 개선을 위한 내부 움직임 평가

  • Yu, Jung-Woo (Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences) ;
  • Woo, Sang-Keun (Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences) ;
  • Lee, Yong-Jin (Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences) ;
  • Kim, Kyeong-Min (Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences) ;
  • Kim, Jin-Su (Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences) ;
  • Lee, Kyo-Chul (Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences) ;
  • Park, Sang-Jun (Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences) ;
  • Yu, Ran-Ji (Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences) ;
  • Kang, Joo-Hyun (Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences) ;
  • Ji, Young-Hoon (Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences) ;
  • Chung, Yong-Hyun (Radiological Science, Yonsei University) ;
  • Kim, Byung-Il (Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences) ;
  • Lim, Sang-Moo (Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences)
  • 유정우 (한국원자력의학원 방사선의학연구소 분자영상연구부) ;
  • 우상근 (한국원자력의학원 방사선의학연구소 분자영상연구부) ;
  • 이용진 (한국원자력의학원 방사선의학연구소 분자영상연구부) ;
  • 김경민 (한국원자력의학원 방사선의학연구소 분자영상연구부) ;
  • 김진수 (한국원자력의학원 방사선의학연구소 분자영상연구부) ;
  • 이교철 (한국원자력의학원 방사선의학연구소 분자영상연구부) ;
  • 박상준 (한국원자력의학원 방사선의학연구소 방사선영향연구부) ;
  • 유란지 (한국원자력의학원 방사선의학연구소 분자영상연구부) ;
  • 강주현 (한국원자력의학원 방사선의학연구소 분자영상연구부) ;
  • 지영훈 (한국원자력의학원 방사선의학연구소 방사선암연구부) ;
  • 정용현 (연세대학교 방사선학과) ;
  • 김병일 (한국원자력의학원 방사선의학연구소 분자영상연구부) ;
  • 임상무 (한국원자력의학원 방사선의학연구소 분자영상연구부)
  • Received : 2011.08.23
  • Accepted : 2011.09.23
  • Published : 2011.09.30

Abstract

The purpose of this study was to estimate internal motion using molecular sieve for quantitative improvement of lung tumor and to localize lung tumor in the small animal PET image by evaluated data. Internal motion has been demonstrated in small animal lung region by molecular sieve contained radioactive substance. Molecular sieve for internal lung motion target was contained approximately 37 kBq Cu-64. The small animal PET images were obtained from Siemens Inveon scanner using external trigger system (BioVet). SD-Rat PET images were obtained at 60 min post injection of FDG 37 MBq/0.2 mL via tail vein for 20 min. Each line of response in the list-mode data was converted to sinogram gated frames (2~16 bin) by trigger signal obtained from BioVet. The sinogram data was reconstructed using OSEM 2D with 4 iterations. PET images were evaluated with count, SNR, FWHM from ROI drawn in the target region for quantitative tumor analysis. The size of molecular sieve motion target was $1.59{\times}2.50mm$. The reference motion target FWHM of vertical and horizontal was 2.91 mm and 1.43 mm, respectively. The vertical FWHM of static, 4 bin and 8 bin was 3.90 mm, 3.74 mm, and 3.16 mm, respectively. The horizontal FWHM of static, 4 bin and 8 bin was 2.21 mm, 2.06 mm, and 1.60 mm, respectively. Count of static, 4 bin, 8 bin, 12 bin and 16 bin was 4.10, 4.83, 5.59, 5.38, and 5.31, respectively. The SNR of static, 4 bin, 8 bin, 12 bin and 16 bin was 4.18, 4.05, 4.22, 3.89, and 3.58, respectively. The FWHM were improved in accordance with gate number increase. The count and SNR were not proportionately improve with gate number, but shown the highest value in specific bin number. We measured the optimal gate number what minimize the SNR loss and gain improved count when imaging lung tumor in small animal. The internal motion estimation provide localized tumor image and will be a useful method for organ motion prediction modeling without external motion monitoring system.

이 연구에서는 폐종양의 정량적 개선을 위하여 분자체를 이용하여 내부 움직임을 측정하고 평가된 데이터를 기반으로 소동물 PET 영상내의 폐종양을 국소화하고자 하였다. 소동물 폐 영역의 내부 움직임은 방사성물질을 흡착한 분자체를 이용하여 소동물 폐 영역에 부착함으로써 구현하였다. 폐 영역의 내부 움직임 표적으로 사용된 분자체는 약 37 kBq의 Cu-64를 흡착시켜 폐종양을 모사하였다. 소동물 PET 영상은 Siemens Inveon 스캐너를 이용하여 획득하였으며 외부 움직임 데이터는 트리거 생성 장치인 BioVet을 이용하였다. SD-Rat PET 영상은 $^{18}F$-FDG 37 MBq/0.2 mL을 미정맥으로 주사하고 60분 후 20분간 데이터를 획득하였다. 리스트모드 데이터의 각 선응답은 외부 트리거 장치에 의해 획득된 트리거신호를 이용하여 2 bin에서 16 bin으로 사이노그램을 획득하였다. 획득된 사이노그램 데이터는 OSEM 2D 알고리즘을 이용하여 4회의 반복으로 재구성하였다. 종양의 정량적 분석을 위한 PET 영상은 종양을 묘사한 분자체 영역에 관심영역을 설정하고 계수와 SNR 그리고 FWHM을 이용하여 평가하였다. 움직임 표적으로 사용된 분자체의 크기는 $1.59{\times}2.50mm$이었으며, 기준 영상으로 획득한 체외 분자체 수직 및 수평 FWHM은 $2.91{\times}1.43mm$이었다. 정적영상과 4 bin 그리고 8 bin 영상에서의 수직 FWHM은 각각 3.90 mm, 3.74 mm, 3.16 mm이었으며 수평 FWHM은 각각 2.21 mm, 2.06 mm, 1.60 mm이었다. 정적영상, 4 bin, 8 bin, 12 bin 그리고 16 bin의 계수 값은 각각 4.10, 4.83, 5.59, 5.38, 5.31이었다. 정적영상, 4 bin, 8 bin, 12 bin 그리고 16 bin의 SNR은 4.18, 4.05, 4.22, 3.89, 3.58이었다. FWHM은 게이트 수의 증가에 따라 계속 향상됨을 확인하였다. 그러나 계수 값과 SNR은 게이트 수의 증가에 따라 계속 향상되지 않고 특정 bin 수에서 가장 높은 값을 보여 소동물 폐 영역에서의 종양 영상화시 SNR의 손실을 최소화하면서 향상된 계수 값을 얻을 수 있는 게이트 수를 획득하였다. 내부 움직임 측정은 최적화된 종양 국소화 영상을 획득할 수 있으며 외부 움직임 모니터링 시스템을 사용하지 않고 장기별 움직임 예측 모델링을 위한 유용한 방법이 될 것으로 기대된다.

Keywords

References

  1. Bao Q, Newport D, Chen M, David BS, Arion FC: Performance evaluation of the Inveon dedicated PET preclinical tomograph based on the NEMA NU-4 standards. J Nucl Med 50:401-408 (2009) https://doi.org/10.2967/jnumed.108.056374
  2. Lowe VJ, Fletcher JW, Gobar L, et al: Prospective investigation of positron emission tomography in lung nodules. J Clin Oncol 16:1075-1084 (1998) https://doi.org/10.1200/JCO.1998.16.3.1075
  3. Pan T, Lee TY, Rietzel E, Chen GT: 4D-CT imaging of a volume influenced by respiratory motion on multi-slice CT. Med Phys 31:333-340 (2004) https://doi.org/10.1118/1.1639993
  4. Nehmeh SA, Erdi YE, Pan T, et al: Four-dimensional (4D) PET/CT imaging of the thorax. Med Phys 31:3179-3186 (2004) https://doi.org/10.1118/1.1809778
  5. Catana C, Benner T, van der Kouwe A, et al: MR-assisted PET Motion Correction for eurological Studies in an Integrated MR-PET Scanner. J Nucl Med 52:154-161 (2011) https://doi.org/10.2967/jnumed.110.079343
  6. Tsoumpas C, Mackewn JE, Halsted P, et al: Simultaneous PET-MR acquisition and MR-derived motion fields for correction of non-rigid motion in PET. Ann Nucl Med 24:745-750 (2010) https://doi.org/10.1007/s12149-010-0418-2
  7. Martínez-Möller A, Bundschuh R, Riedel M, et al: Comparison of respiratory sensors and its compliance for respiratory gating in emission tomography. J Nucl Med 48:426 (2007)
  8. Guivarc'h O, Turzo A, Visvikis D, Bizais Y: Synchronization of pulmonary scintigraphy by respiratory flow and by impedance plethysmography. Proc. SPIE Med Imaging 5370:1166- 1175 (2004)
  9. Woo SK, Watabe H, Kim KM, et al: Development of Event-based Motion Correction Technique for PET Study Using List-mode Acquisition and Optical Motion Tracking System. Proc. SPIE Med Imaging 5032:1300-1307 (2003)
  10. Nehmeh SA, Erdi YE, Ling CC, et al: Effect of respiratory gating on quantifying PET images of lung cancer. J Nucl Med 43:876-881 (2002)
  11. Nehmeh SA, Erdi YE, Ling CC, et al: Effect of respiratory gating on reducing lung motion artifacts in PET imaging of lung cancer. Med Phys 29:366-371 (2002) https://doi.org/10.1118/1.1448824
  12. Woo SK, Choi JY, Song TY, Choi Y, Lee KH, Kim BT: Development of a Motion Correction System for Respiratory- Gated PET Study. Proc IEEE Nucl Sci Sympo and Med Imaging 4:2366-2369 (2004)
  13. Park SJ, Ionascu D, Killoran J, et al: Evaluation of the combined effects of target size, respiratory motion and background activity on 3D and 4D PET/CT images. Phys Med Biol 53:3661-3379 (2008) https://doi.org/10.1088/0031-9155/53/13/018
  14. Pevsner A, Nehmeh SA, Humm JL, Mageras GS, Erdi YE: Effect of motion on tracer activity determination in CT attenuation corrected PET images: a lung phantom study. Med Phys 32:2358-2362 (2005) https://doi.org/10.1118/1.1943809
  15. Woo SK, Lee TS, Kim KM, et al: Anesthesia condition for (18)F-FDG imaging of lung metastasis tumors using small animal PET. Nucl Med Biol 35:143-150 (2008) https://doi.org/10.1016/j.nucmedbio.2007.10.003
  16. Boucher L, Rodrigue S, Lecomte R, Bénard F: Respiratory gating for 3-dimensional PET of the thorax: feasibility and initial results. J Nucl Med 45:214-219 (2004)