Feasibility Study of the Radiophotoluminescent Glass Dosimeter for High-energy Electron Beams

유리선량계를 이용한 고에너지 전자선 측정 이용 가능성에 관한 연구

  • Son, Ki-Hong (Department of Radiological Cancer Medicine, University of Science and Technology) ;
  • Jung, Hai-Jo (Department of Radiological Cancer Medicine, University of Science and Technology) ;
  • Shin, Sang-Hun (Research Institute of Radiological and Medical Sciences, Korea Institute of Radiological and Medical Sciences) ;
  • Lee, Hyun-Ho (Research Institute of Radiological and Medical Sciences, Korea Institute of Radiological and Medical Sciences) ;
  • Lee, Sung-Hyun (Department of Radiological Cancer Medicine, University of Science and Technology) ;
  • Kim, Mi-Sook (Department of Radiological Cancer Medicine, University of Science and Technology) ;
  • Ji, Young-Hoon (Department of Radiological Cancer Medicine, University of Science and Technology) ;
  • Kim, Kum-Bae (Department of Radiological Cancer Medicine, University of Science and Technology)
  • 손기홍 (과학기술연합대학원대학교 원자력암의학) ;
  • 정해조 (과학기술연합대학원대학교 원자력암의학) ;
  • 신상훈 (한국원자력의학원 방사선의학연구소) ;
  • 이현호 (한국원자력의학원 방사선의학연구소) ;
  • 이성현 (과학기술연합대학원대학교 원자력암의학) ;
  • 김미숙 (과학기술연합대학원대학교 원자력암의학) ;
  • 지영훈 (과학기술연합대학원대학교 원자력암의학) ;
  • 김금배 (과학기술연합대학원대학교 원자력암의학)
  • Received : 2011.02.15
  • Accepted : 2011.03.11
  • Published : 2011.03.31

Abstract

Our goal is to assess the suitability of a glass dosimeter on detection of high-energy electron beams for clinical use, especially for radiation therapy. We examined the dosimetric characteristics of glass dosimeters including dose linearity, reproducibility, angular dependence, dose rate dependence, and energy dependence of 5 different electron energy qualities. The GD was irradiated with high-energy electron beams from the medical linear accelerator andgamma rays from a cobalt-60 teletherapy unit. All irradiations were performed in a water phantom. The result of the dose linearity for high-energy electron beams showed well fitted regression line with the coefficient of determination; $R^2$ of 0.999 between 6 and 20 MeV. The reproducibility of GDs exposed to the nominal electron energies 6, 9, 12, 16, and 20 MeV was ${\pm}1.2%$. In terms of the angular dependence to electron beams,GD response differences to the electron beam were within 1.5% for angles ranging from $0^{\circ}$ to $90^{\circ}$ and GD's maximum response differencewas 14% lower at 180o. In the dose rate dependence, measured dose values were normalized to the value obtained from 500 MU/min. The uncertainties of dose rate were measured within ${\pm}1.5%$ except for the value from 100 MU/min. In the evaluation of the energy dependence of the GD at nominal electron energies between 6 and 20 MeV, we obtained lower responses between 1.1% and 4.5% based on cobalt-60 beam. Our results show that GDs have a considerable potentiality for measuring doses delivered by high-energy electron beams.

본 연구에서는 유리선량계를 이용하여 전자선 치료빔의 선량평가 이용 가능성을 판단하고자 하였다. GD-302M 유리선량계에 선형가속기를 이용한 전자선과 $^{60}Co$ 방사선조사기로부터 감마선을 조사하였다. 유리선량계의 전자선에서의 선량 선형성, 재현성, 방향성, 선량률의존성, 에너지의존성의 총 5개 항목에 대해서 평가를 하였다. 측정은 물팬톰 $40{\times}40{\times}40cm^3$을 이용하여 유리선량계의 흡수선량을 측정하였다. 명목상 전자선에너지 6, 9, 12, 16, 20 MeV에서의 선량 1 Gy부터 15 Gy까지 유리선량계의 반응도를 평가해 본 결과 5개 전자선 에너지에서 같은 $R^2$=0.999의 선형계수를 확인할 수 있었다. 또한 5개의 에너지에서 총 100개의 유리선량계를 판독한 결과, 재현성은 5개 전자선에너지 평균 ${\pm}1.2%$ (1SD) 이내에서 잘 일치함을 확인할 수 있었다. 유리선량계의 방향성은 유리선량계의 수직방향인 $90^{\circ}$를 기준으로 하였을때 $0^{\circ}$에서 $90^{\circ}$사이에서 빔방향에 따라 1.5% 이내의 차이를 나타내었다. 선량률의존성은 500 MU/min을 기준으로 200 MU/min에서 1,000 MU/min 사이에서 ${\pm}1.5%$의 차이를 나타내었다. 유리선량계의 에너지 의존성은 원통형 전리함으로 측정한 선량과 비교했을때 5개의 명목상 전자선에너지(6 MeV에서 20 MeV) 각각에 대해 $^{60}Co$ 감마선의 반응도로 일반화시킨 결과 1.1%에서 3.5% 사이에서 낮은값을 나타내었다. 본 연구결과를 통하여 측정환경에 따라 결과값을 적절히 환산인자로 활용한다면 유리선량계를 이용한 전자선치료빔 선량평가가 가능하리라 사료된다.

Keywords

References

  1. Rah JE, Shin DO, Jang JS, Kim MC, Yoon SC, Suh TS: Application of a glass rod detector for the output factor measurement in the CyberKnife. Appl Radiat Isot 66:1980-1985 (2008) https://doi.org/10.1016/j.apradiso.2008.06.041
  2. Araki F, Ikegami T, Ishidoya T, Kubo HD: Measurements of Gamma-Knife helmet output factors using a radiophotoluminescent glass rod dosimeter and a diode detector. Med Phys 30:1976-1981 (2003) https://doi.org/10.1118/1.1587451
  3. Araki F, Moribe N, Shimonobou T, Yamashita Y: Dosimetric properties of radiophotoluminescent glass rod detector in high-energy photon beams from a linear accelerator and Cyber-Knife. Med Phys 31:1980-1986 (2004) https://doi.org/10.1118/1.1758351
  4. Heydarian M, Hoban PW, Beddoe AH: A comparison of dosimetry techniques in stereotactic radiosurgery. Phys Med Biol 41:93-110 (1996) https://doi.org/10.1088/0031-9155/41/1/008
  5. Ertl A, Zehetmayer M, Schoggl A, et al: Shuttle dose at the Vienna Leksell Gamma Knife. Phys Med Biol 43:1567-1578 (1998) https://doi.org/10.1088/0031-9155/43/6/015
  6. Rah JE, Hwang UJ, Jeung H, et al: Clinical application of glass dosimeter for in vivo dose measurements of total body irradiation treatment technique. Radiat Meas 46:40-45 (2011) https://doi.org/10.1016/j.radmeas.2010.08.013
  7. Chester S: The energy dependence and dose response of a commercial optically stimulated luminescent detector for kilovoltage photon, megavoltage photon, and electron, proton, and carbon beams. Med Phys 36:1690-1699 (2009) https://doi.org/10.1118/1.3097283
  8. Kirby TH, Hanson WF, Jhonston DA: Uncertainty analysis of absorbed dose calculations from thermoluminescence dosimeters. Med Phys 19:1427-1433 (1992) https://doi.org/10.1118/1.596797
  9. Mobit PN, Mayles P, Nahum AE: The quality dependence of LiF TLD in megavoltage photon beams: Monte Carlo simulation and experiments. Phys Med Biol 41:387-398 (1996) https://doi.org/10.1088/0031-9155/41/3/004
  10. Mizuno H, Kanai T, Kusano Y, et al: Feasibility study of Glass dosimeter postal dosimetry audit of high-energy radiotherapy photon beams. Radiol Oncol 86:258-263 (2008) https://doi.org/10.1016/j.radonc.2007.10.024
  11. Araki F, Ishidoya T, Ikegami T, Moribe N, Yamashita Y: Application of radiophotoluminescent glass plate dosimeter for small field dosimetry. Med Phys 32:1548-1554 (2005) https://doi.org/10.1118/1.1925187
  12. Ashahi Techno Glass Corporation (ATG): Explanation material of RPL glass dosimeter: Small element system. Tokyo, Japan (2004)
  13. Fan S, Yu C, He D, Li K, Hu L: Gamma rays induced defect centers in phosphate glass for radiophotoluminescence dosimeter. Radiat Meas 46:46-50 (2011) https://doi.org/10.1016/j.radmeas.2010.09.002
  14. Hoshi Y, Nomura T, Oda T: Application of a newly developed photoluminescence glass dosimeter for measuring the absorbed dose in individual mice exposed to low-dose rate 137CS γ-rays. J Radiat Res 41:129-137 (2000) https://doi.org/10.1269/jrr.41.129
  15. Ihara Y, Kishi A, Kada W: A compact system for measurement of radiophotoluminescence of phosphate glass dosimeter. Radiat Meas 43:542-545 (2008) https://doi.org/10.1016/j.radmeas.2007.11.045
  16. Hsu SM, Yang HW, Yeh TC: Synthesis and physical characteristics of radiophotoluminescent glass dosimeters. Radiat Meas 42:621-624 (2007) https://doi.org/10.1016/j.radmeas.2007.01.053
  17. IAEA, International Atomic Energy Agency: Absorbed Dose Determination in External beam Radiotherapy, An International Code of Practice for Dosimetry based on Standards of Absorbed dose to Water, Technical Reports Series TRS-398, IAEA, Vienna, Austria (2000)
  18. IAEA, International Atomic Energy Agency: Absorbed Dose Determination in Photon and Electron Beams, an International Code of Practice, Technical Reports Series TRS-277, IAEA, Vienna, Austria (1987)
  19. Rah JE, Hong JY, Kim GY, Kim YR, Shin DO, Suh TS: A comparison of the dosimetric characteristics of a glass rod dosimeter and a thermoluminescent dosimeter for mailed dosimeter. Radiat Meas 44:18-22 (2009) https://doi.org/10.1016/j.radmeas.2008.10.010
  20. ICRU, International Commission on Radiation Units & Measurements: Determination of Absorbed Dose in a Patient Irradiated by Beams of X or Gamma Rays in Radiotherapy Procedures, Report No. 24, ICRU, Bethesda, Maryland (1976)