DOI QR코드

DOI QR Code

Expressed Sequence Tag Analysis of the Erythrocytic Stage of Plasmodium berghei

  • Seok, Ji-Woong (Department of Parasitology, Kyungpook National University School of Medicine) ;
  • Lee, Yong-Seok (Department of Parasitology, College of Medicine and Frontier Inje Research for Science and Technology, Inje University) ;
  • Moon, Eun-Kyung (Department of Parasitology, Kyungpook National University School of Medicine) ;
  • Lee, Jung-Yub (Department of Parasitology, Kyungpook National University School of Medicine) ;
  • Jha, Bijay Kumar (Department of Parasitology, Kyungpook National University School of Medicine) ;
  • Kong, Hyun-Hee (Department of Parasitology, Kyungpook National University School of Medicine) ;
  • Chung, Dong-Il (Department of Parasitology, Kyungpook National University School of Medicine) ;
  • Hong, Yeon-Chul (Department of Parasitology, Kyungpook National University School of Medicine)
  • Received : 2011.04.16
  • Accepted : 2011.06.02
  • Published : 2011.09.30

Abstract

Rodent malaria parasites, such as Plasmodium berghei, are practical and useful model organisms for human malaria research because of their analogies to the human malaria in terms of structure, physiology, and life cycle. Exploiting the available genetic sequence information, we constructed a cDNA library from the erythrocytic stages of P. berghei and analyzed the expressed sequence tag (EST). A total of 10,040 ESTs were generated and assembled into 2,462 clusters. These EST clusters were compared against public protein databases and 48 putative new transcripts, most of which were hypothetical proteins with unknown function, were identified. Genes encoding ribosomal or membrane proteins and purine nucleotide phosphorylases were highly abundant clusters in P. berghei. Protein domain analyses and the Gene Ontology functional categorization revealed translation/protein folding, metabolism, protein degradation, and multiple family of variant antigens to be mainly prevalent. The presently-collected ESTs and its bioinformatic analysis will be useful resources to identify for drug target and vaccine candidates and validate gene predictions of P. berghei.

Keywords

References

  1. Janse CJ, Carlton JM, Walliker D, Waters AP. Conserved location of genes on polymorphic chromosomes of four species of malaria parasites. Mol Biochem Parasitol 1994; 68: 285-296. https://doi.org/10.1016/0166-6851(94)90173-2
  2. Rich SM, Ayala FJ. Progress in malaria research: The case for phylogenetics. Adv Parasitol 2003; 54: 255-280.
  3. Booker ML, Bastos CM, Kramer ML, Barker RH Jr, Skerlj R, Sidhu AB, Deng X, Celatka C, Cortese JF, Guerrero Bravo JE, Crespo Llado KN, Serrano AE, Angulo-Barturen I, Jimenez-Diaz MB, Viera S, Garuti H, Wittlin S, Papastogiannidis P, Lin JW, Janse CJ, Khan SM, Duraisingh M, Coleman B, Goldsmith EJ, Phillips MA, Munoz B, Wirth DF, Klinger JD, Wiegand R, Sybertz E. Novel inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase with anti-malarial activity in the mouse model. J Biol Chem 285: 33054-33064.
  4. Hall N, Karras M, Raine JD, Carlton JM, Kooij TW, Berriman M, Florens L, Janssen CS, Pain A, Christophides GK, James K, Rutherford K, Harris B, Harris D, Churcher C, Quail MA, Ormond D, Doggett J, Trueman HE, Mendoza J, Bidwell SL, Rajandream MA, Carucci DJ, Yates JR 3rd, Kafatos FC, Janse CJ, Barrell B, Turner CM, Waters AP, Sinden RE. A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses. Science 2005; 307: 82-86. https://doi.org/10.1126/science.1103717
  5. Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DM, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barrell B. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 2002; 419: 498-511. https://doi.org/10.1038/nature01097
  6. Chakrabarti D, Reddy GR, Dame JB, Almira EC, Laipis PJ, Ferl RJ, Yang TP, Rowe TC, Schuster SM. Analysis of expressed sequence tags from Plasmodium falciparum. Mol Biochem Parasitol 1994; 66: 97-104. https://doi.org/10.1016/0166-6851(94)90039-6
  7. Carlton JM, Muller R, Yowell CA, Fluegge MR, Sturrock KA, Pritt JR, Vargas-Serrato E, Galinski MR, Barnwell JW, Mulder N, Kanapin A, Cawley SE, Hide WA, Dame JB. Profiling the malaria genome: A gene survey of three species of malaria parasite with comparison to other apicomplexan species. Mol Biochem Parasitol 2001; 118: 201-210. https://doi.org/10.1016/S0166-6851(01)00371-1
  8. Watanabe J, Sasaki M, Suzuki Y, Sugano S. Analysis of transcriptomes of human malaria parasite Plasmodium falciparum using full-length enriched library: Identification of novel genes and diverse transcription start sites of messenger RNAs. Gene 2002; 291: 105-113. https://doi.org/10.1016/S0378-1119(02)00552-8
  9. Li L, Brunk BP, Kissinger JC, Pape D, Tang K, Cole RH, Martin J, Wylie T, Dante M, Fogarty SJ, Howe DK, Liberator P, Diaz C, Anderson J, White M, Jerome ME, Johnson EA, Radke JA, Stoeckert CJ Jr, Waterston RH, Clifton SW, Roos DS, Sibley LD. Gene discovery in the apicomplexa as revealed by EST sequencing and assembly of a comparative gene database. Genome Res 2003; 13: 443-454. https://doi.org/10.1101/gr.693203
  10. Bowman IB, Grant PT, Kermack WO. The metabolism of Plasmodium berghei, the malaria parasite of rodents. I. The preparation of the erythrocytic form of P. berghei separated from the host cell. Exp Parasitol 1960; 9: 131-136. https://doi.org/10.1016/0014-4894(60)90021-7
  11. Ewing B, Hillier L, Wendl MC, Green P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 1998; 8: 175-185.
  12. Ewing B, Green P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 1998; 8: 186-194.
  13. Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J. TIGR Gene Indices clustering tools (TGICL): A software system for fast clustering of large EST datasets. Bioinformatics 2003; 19: 651-652. https://doi.org/10.1093/bioinformatics/btg034
  14. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. NCBI BLAST: A better web interface. Nucleic Acids Res 2008; 36: W5-W9. https://doi.org/10.1093/nar/gkn201
  15. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005; 21: 3674-3676. https://doi.org/10.1093/bioinformatics/bti610
  16. Mulder N, Apweiler R. InterPro and InterProScan: Tools for protein sequence classification and comparison. Methods Mol Biol 2007; 396: 59-70.
  17. Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer EL, Eddy SR, Bateman A. The Pfam protein families database. Nucleic Acids Res 2010; 38: D211-222. https://doi.org/10.1093/nar/gkp985
  18. Janssen CS, Barrett MP, Turner CM, Phillips RS. A large gene family for putative variant antigens shared by human and rodent malaria parasites. Proc Biol Sci 2002; 269: 431-436. https://doi.org/10.1098/rspb.2001.1903
  19. Trenholme KR, Brown CL, Skinner-Adams TS, Stack C, Lowther J, To J, Robinson MW, Donnelly SM, Dalton JP, Gardiner DL. Aminopeptidases of malaria parasites: New targets for chemotherapy. Infect Disord Drug Targets 2010; 10: 217-225. https://doi.org/10.2174/187152610791163363
  20. Zhang P, Nicholson DE, Bujnicki JM, Su X, Brendle JJ, Ferdig M, Kyle DE, Milhous WK, Chiang PK. Angiogenesis inhibitors specific for methionine aminopeptidase 2 as drugs for malaria and leishmaniasis. J Biomed Sci 2002; 9: 34-40. https://doi.org/10.1007/BF02256576
  21. Chen X, Chong CR, Shi L, Yoshimoto T, Sullivan DJ Jr, Liu JO. Inhibitors of Plasmodium falciparum methionine aminopeptidase 1b possess antimalarial activity. Proc Natl Acad Sci U S A 2006; 103: 14548-14553. https://doi.org/10.1073/pnas.0604101103
  22. Kicska GA, Tyler PC, Evans GB, Furneaux RH, Kim K, Schramm VL. Transition state analogue inhibitors of purine nucleoside phosphorylase from Plasmodium falciparum. J Biol Chem 2002; 277: 3219-3225. https://doi.org/10.1074/jbc.M105905200
  23. Kicska GA, Tyler PC, Evans GB, Furneaux RH, Schramm VL, Kim K. Purine-less death in Plasmodium falciparum induced by immucillin-H, a transition state analogue of purine nucleoside phosphorylase. J Biol Chem 2002; 277: 3226-3231. https://doi.org/10.1074/jbc.M105906200
  24. Downie MJ, Kirk K, Mamoun CB. Purine salvage pathways in the intraerythrocytic malaria parasite Plasmodium falciparum. Eukaryot Cell 2008; 7: 1231-1237. https://doi.org/10.1128/EC.00159-08
  25. Ulrich P, Paul G, Perentes E, Mahl A, Roman D. Validation of immune function testing during a 4-week oral toxicity study with FK506. Toxicol Lett 2004; 149: 123-131. https://doi.org/10.1016/j.toxlet.2003.12.069
  26. Monaghan P, Bell A. A Plasmodium falciparum FK506-binding protein (FKBP) with peptidyl-prolyl cis-trans isomerase and chaperone activities. Mol Biochem Parasitol 2005; 139: 185-195. https://doi.org/10.1016/j.molbiopara.2004.10.007
  27. Bell A, Wernli B, Franklin RM. Roles of peptidyl-prolyl cis-trans isomerase and calcineurin in the mechanisms of antimalarial action of cyclosporin A, FK506, and rapamycin. Biochem Pharmacol 1994; 48: 495-503. https://doi.org/10.1016/0006-2952(94)90279-8
  28. Cui L, Fan Q, Hu Y, Karamycheva SA, Quackenbush J, Khuntirat B, Sattabongkot J, Carlton JM. Gene discovery in Plasmodium vivax through sequencing of ESTs from mixed blood stages. Mol Biochem Parasitol 2005; 144: 1-9. https://doi.org/10.1016/j.molbiopara.2005.05.016
  29. Pallavi R, Roy N, Nageshan RK, Talukdar P, Pavithra SR, Reddy R, Venketesh S, Kumar R, Gupta AK, Singh RK, Yadav SC, Tatu U. Heat shock protein 90 as a drug target against protozoan infections: biochemical characterization of HSP90 from Plasmodium falciparum and Trypanosoma evansi and evaluation of its inhibitor as a candidate drug. J Biol Chem 285: 37964-37975.
  30. Wilson RJ, Denny PW, Preiser PR, Rangachari K, Roberts K, Roy A, Whyte A, Strath M, Moore DJ, Moore PW, Williamson DH. Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. J Mol Biol 1996; 261: 155-172. https://doi.org/10.1006/jmbi.1996.0449
  31. McFadden GI. Mergers and acquisitions: Malaria and the great chloroplast heist. Genome Biol 2000; 1: REVIEWS1026.
  32. van Dooren GG, Schwartzbach SD, Osafune T, McFadden GI. Translocation of proteins across the multiple membranes of complex plastids. Biochim Biophys Acta 2001; 1541: 34-53. https://doi.org/10.1016/S0167-4889(01)00154-9
  33. Tonkin CJ, Kalanon M, McFadden GI. Protein targeting to the malaria parasite plastid. Traffic 2008; 9: 166-175.
  34. Lim L, McFadden GI. The evolution, metabolism and functions of the apicoplast. Philos Trans R Soc Lond B Biol Sci 2010; 365: 749-763. https://doi.org/10.1098/rstb.2009.0273
  35. Ralph SA, van Dooren GG, Waller RF, Crawford MJ, Fraunholz MJ, Foth BJ, Tonkin CJ, Roos DS, McFadden GI. Tropical infectious diseases: Metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat Rev Microbiol 2004; 2: 203-216. https://doi.org/10.1038/nrmicro843