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APPROXIMATE SOLUTIONS TO MHD SQUEEZING FLUID

FLOW

S. ISLAM, MURAD ULLAH∗, GUL ZAMAN, M. IDREES

Abstract. In this paper, a steady axisymmetric MHD flow of two di-
mensional incompressible fluids is studied under the influence of a uniform
transverse magnetic field. The governing equations are reduced to nonlin-
ear boundary value problem by applying the integribility conditions. Opti-
mal Homotopy Asymptotic Method (OHAM) is applied to obtain solution
of reduced fourth order nonlinear boundary value problem. For comparison,
the same problem is also solved by Variational Iteration Method (VIM).
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1. Introduction

Squeezing flows have many applications in food industry, especially in chem-
ical engineering [1, 2, 3, 4]. Some practical examples of squeezing flow include
polymer processing, compression and injection molding. Grimm [5] studied nu-
merically, the thin Newtonian liquids films being squeezed between two plates.
Squeezing flow coupled with magnetic field is widely applied to bearing with
liquid-metal lubrication [2, 6, 7, 8]. Nonlinear differential equations can be solved
analytically by various perturbation techniques. These techniques are very sim-
ple in calculating the solution, but the limitations of these methods are based on
the assumption of small parameter. The researchers were looking for some new
techniques which are independent of the small parameter. An excellent review
of these methods is given by He [9] in his paper. In the last decade, the idea
of homotopy was combined with perturbation. The fundamental work was done
by (Liao [10]) and (JH. He [11, 12]. This paper applies the so-called Optimal
Homotopy Asymptotic Method (Marinca et al. [14, 15, 16]. In a series of papers
by (Marinca et al. [17, 18]), Islam et al. [19, 20] and (S. Iqbal et al. [21])
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have not only applied this method successfully for some important problems in
science and technology, but they have also shown its effectiveness, generalization
and reliability. In this paper, we use Optimal Homotopy Asymptotic Method
(OHAM) to study the squeezing MHD fluid flow between two infinite planar
plates slowly approaching each other. The problem is studied in the influence of
inertial terms and magnetic field.

2. Basic equations and problem formulation

Consider a squeezing flow of an incompressible Newtonian fluid in the presence
of a magnetic field of a constant density ρ and viscosity µ , squeezed between
two large planar parallel plates, separated by a small distance 2H and the plates
approaching each other with a low constant velocity V , as illustrated in figure 1
and the flow can be assumed to quasi-steady [1, 3, 28]

The Navier-Stokes equations [3, 4] governing such flow in the presence of
magnetic field, when inertial terms are retained in the flow, are:

∇V.u = 0, (1)

ρ

[
∂u.

∂t
+ (u.∇)u

]
= ∇.T + J ×B+ ρf, (2)

where u is the velocity vector, ∇ denotes the material time derivative, T is
the Cauchy stress tensor, T = −pI + µA1, where A1 = ∇u + (u)T , J is the
electric current density, B is the total magnetic field and B = B0 + b, where B0

represents the imposed magnetic field and b denotes the induced magnetic field.
In the absence of displacement currents, the modified Ohm’s law and Maxwell’s
equations ([22] and the references therein) are

J = σ[E + u×B], (3)

divB = 0, ∇×B = µmJ, curlE =
∂B

∂t
, (4)

in which σ is the electrical conductivity, E the electric field and µm the magnetic
permeability.

The following assumptions are made in order to lead our discussion:

1. The density ρ, magnetic permeability µm and electric field conductivity
σ, are assumed to be constant throughout the flow field region.

2. The electrical conductivity σ of the fluid considers being finite.
3. Total magnetic field B is perpendicular to the velocity field V and the

induced magnetic field b is negligible compared with the applied mag-
netic field B0 so that the magnetic Reynolds number is small ([22] and
the references therein).

4. We assume a situation where no energy is added or extracted from the
fluid by the electric field, which implies that there is no electric field
present in the fluid flow region.
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Figure 1. A steady squeezing axisymmetric fluid flow between
two parallel plates.

Under these assumptions, the magnetohydrodynamic force involved in Eq. (2)
can be put into the form,

J ×B = −σB2
0u. (5)

We consider an incompressible Newtonian fluid, squeezed between two large
planar, parallel smooth plates which is separated by a small distance 2H and
moving towards each other with velocity V . We assume that the plates are non-
conducting and the magnetic field is applied along the z-axis. For small values
of the velocity V , as shown in the Figure 1, the gap distance 2H between the
plates changes slowly with time t, so that it can be taken as constant, the flow
is steady [2, 28]. An axisymmetric flow in cylindrical coordinates r, θ, z with
z-axis perpendicular to plates and z = ±H at the plates. Since we have axial
symmetry, so u is represented by u = (ur(r, z), 0, uz(r, z)). When body forces
are negligible, Navier-Stokes Eqs. (1-2) in cylindrical coordinates where there is
no tangential velocity (uθ = 0), are:

ρ

(
ur

∂ur

∂r
+ uz

∂ur

∂z

)
= −∂p

∂r
+

(
∂2ur

∂r2
+

1

r

∂ur

∂r
− ur

r2
+

∂2ur

∂z2

)
+ σB2

0ur, (6)

ρ

(
uz

∂uz

∂r
+ uz

∂uz

∂z

)
= −∂p

∂r
+

(
∂2uz

∂r2
+

1

r

∂uz

∂r
+

∂2uz

∂z2

)
, (7)

where p is the pressure, and equation of continuity is:

1

r

∂

∂r
(rur) +

∂uz

∂z
= 0. (8)

The boundary conditions require

ur = 0, uz = −V at z = H

∂ur

∂z = 0, uz = 0 at z = 0.
(9)
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Introducing the axisymmetric Stokes stream function ψ

ur =
1

r

∂ψ

∂z
, uz = −1

r

∂ψ

∂r
(10)

The continuity equation is satisfied using Eq. (11), substituting Eqs. (3-5) and
Eq. (11) in Eq. (7-8) we obtain

− ρ

r2
∂ψ

∂r
E2ψ = −∂p

∂r
+

µ

r

∂E2ψ

∂z
− σB2

0

r

∂ψ

∂z
(11)

− ρ

r2
∂ψ

∂z
E2ψ = −∂p

∂z
+

µ

r

∂E2ψ

∂r
(12)

Eliminating the pressure from Eqs. (11) and (12) by integribility condition we
get the compatibility equation

−ρ

[
∂
(
ψ, E2ψ

r2

)

∂(r, z)

]
=

µ

r
E2ψ − σB2

0

r

∂2ψ

∂z2
(13)

where E2 = ∂2

∂r2 − 1
r

∂
∂r + ∂2

∂z2 . The stream function can be expressed as [1, 3,
33-34]:

ψ(r, z) = r2F (z), (14)

In view of Eq. (14), the compatibility Eq. (13) and the boundary conditions (9)
take the form:

F (iv)(z)− σB2
0

r
F

′′
(z) + 2

ρ

µ
F (z)F

′′′
(z) = 0, (15)

subject to

F (0) = 0, F
′′
(0) = 0

F (H) = V
2 , F

′
(H) = 0.

(16)

Introducing the following non-dimensional parameters F ∗ = F/V/2, z∗ = z/H,

Re = ρH/µ/V, m = B0H
√
σ/µ. For simplicity omitting the ∗ the boundary

value problem (14, 15a, 15b) becomes

F (iv)(z)−m2F
′′
(z) +ReF (z)F

′′′
(z) = 0, (17)

with the boundary conditions

F (0) = 0, F
′′
(0) = 0

F (1) = 1, F
′
(1) = 0.

(18)

where Re is the Reynolds number and m is Hartmann number. This problem
has been solved by OHAM and for comparison it has been solved by VIM and
numerically by RK-4 using mathematica.
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3. Basic idea of OHAM

We apply OHAM to the following differential equation:

L(F (z)) + g(z) +NF (z) = 0, B
(
F,

dF

dz

)
= 0 (19)

F (0) = F
′′
(0) = F

′
(1) = 0, F (1) = 1, (20)

where L is a linear operator, z denotes independent variable, F (z) is an unknown
function, g(z) is a known function, N is a nonlinear operator and B is a boundary
operator.

According to OHAM we construct a homotopy φ(z, p) : R× [0, 1] → R which
satisfies

(1− p)[L(φ(z, p) + g(z))] = H(p)[L(φ(z, p) + g(z) +N(φ(z, p)))],

B

(
φ(z, p), ∂φ(z,p)

∂z

)
= 0

(21)

where z and p ∈ [0, 1] is an embedding parameter, H(p) is a nonzero auxiliary
function for p 6= 0, H(0) = 0 and φ(z, p) is an unknown function. Obviously,
when p = 0 and p = 1 it holds that φ(z, 0) = F0(z) and φ(z, 1) = F (z),
respectively. Thus, p as varies from 0 to 1, the solution φ(z, p) approaches from
F0(z) to F (z), where F0(z) is obtained from Eq (23) for p = 0 :

L(F0(z)) + g(z) = 0, B
(
F0,

dF0

dz
= 0

)
. (22)

Next, we choose optimal H(p) identification of the unknown parameter in the
trial function in the form

H(p) = pC1 + p2C2 + p3C3 + ...... (23)

where C1, C2, C3, ... are constants.
To get an approximate solution, we expand φ(z, p, Ci) in Taylor’s series about

p in the following manner,

φ(z, p, Ci) = F0(z) + Σ∞
k=1Fk(z, C1, C2, C3, ......Ck)p

k. (24)

Substituting Eq. (21) into Eq. (18) and equating the coefficient of like powers
of p, we obtain the following linear equations.

Zeroth order problem is given by Eq. (19) and the first and second order
problems are given by Eqs. (22-23) respectively:

L(F1(z)) + g(z) = C1N0(F0(z)), B
(
F1,

dF1

dz

)
= 0. (25)

L(F2(z))− L(F1(z)) = C1N0(F0(z))+

C1

(
L(F1(z)) +N1(F0(z), F1(z))

)
, B

(
F2,

dF2

dz

)
= 0.

(26)
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The general governing equations for Fk(z) are given by:

L(Fk(z))− L(Fk−1(z)) = C1N0(F0(z))+

Σk−1
i=1 Ci

(
L(Fk−i(z)) +Nk−i(F0(z), F1(z), ....., Fk−1(z))

)
,

k = 2, 3, 4 B
(
Fk,

dFk

dz

)
= 0.

(27)

where Nm(F0(z), F1(z), ....., Fk−1(z)) is the coefficient of pm in the expansion of
N(φ(z, p)) about the embedding parameter

N(φ(z, p, Ci)) = C1N0(F0(z)) + Σ∞
m=1Nm

(
F0, F1, F2, ....., Fm), (28)

It has been observed that the convergence of the series (21) depends upon the
auxiliary constants C1, C2, C3, ... If it is convergent at p = 1, one has

F(z, p, Ci) = F0(z) + Σ∞
i=1Fi(z, C1, C2, C3, ......Ci). (29)

Substituting Eq. (26) into Eq. (15) it results the following expression for resid-
ual:

R(z, C1, ......Cm) = L(F(z, C1, C2, ......Cm)) + g(z) +N(F(z, C1, C2, ......Cm)). (30)

If R = 0, then F will be the exact solution. Generally it doesn’t happen,
especially in nonlinear problems.

There are many methods like Method of Least Squares, Galerkin’s Method,
Ritz Method, and Collocation Method to find the optimal values of C1, C2, C3, ....
We apply the Method [14, 15, 16, 17, 18] as under: If ki ∈ (a, b) for i = 1, 2, ....m
and substituting ki into Eq. (27), we obtain the equation

R(k1, Ci) = R(k2, Ci) = .... = R(km, Ci) = 0, for i = 1, 2, ...m, (31)

with these known constants, the approximate solution (of order) is well-determined.

4. Application of OHAM

In this section, we apply OHAM to the following nonlinear problem:

F (iv)(z)−m2F
′′
(z) +ReF (z)F

′′′
(z) = 0, (32)

F (0) = F
′′
(0) = F

′
(1) = 0, F (1) = 1, (33)

According to Eq. (1) we have:

L(F (z)) = F (iv)(z)−m2F
′′
(z), (34)

g(z) = 0, (35)

N(F (z)) = ReF (z)F
′′′
(z). (36)

Using Eq. (18), we construct a family of equations for the given problem (28-29):

(1− p)L(φ(z, p)) = H(p)[L(φ(z, p)) +N(φ(z, p)))], (37)

B

(
φ(z, p),

∂φ(z, p)

∂z

)
= 0. (38)
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(1− p)

(
φ(iv)(z, p)−m2φ

′′
(z, p)

)
= H(p)

(
φ(iv)(z, p)−m2φ

′′
(z, p)

+Reφ(z, p)(φ
′′′
(z, p))

)
,

(39)

B

(
φ(z, p),

∂φ(z, p)

∂z

)
= 0. (40)

Expanding φ(z, p)v in a Taylor series with respect to p, we obtain:

φ(z, p, Ci) = F0(z) + Σk≥1Fk(z, Ci)p
k, i = 1, 2, ..... (41)

Using Eqs. (28, 29, 35 and 37) we get the following cases:
Zeroth-order problem:

F
(iv)
0 (z)−m2F

′′
0 (z) = 0, F0(0) = F

′′
0 (0) = F

′
0(1) = 0, F0(1) = 1, (42)

with solution

F0 =
mz cosh(m)− sinh(mz)

m cosh(m)− sinh(m)
(43)

is the initial guess which satisfies the boundary conditions (16a,16b), in literature
this is known as Newtonian solution in the absence of inertial terms in the
equations of motion.

First order problem:

F
(iv)
1 (z, C1)−m2F

′′
1 (z, C1)− F

(iv)
0 (z) +m2F

′′
0 (z)

= C1F
(iv)
0 (z)−m2C1F

′′
1 (z) +ReC1F0(z)F

′′′
0 (z),

(44)

F1(0) = F1(1) = F
′
1(1) = F

′′
1 (0) = 0. (45)

The solution of (40) and (41) is

F (z, C1) = 192mRez(cosh(m))2C1 − 128mRez
3(cosh(m))2C1

+ 2mRezcosh(2m)C1 − 2mRez
3cosh(2m)C1

− 64mRezcosh(m)cosh(mz)C1 − 384Rezcosh(m)sinh(m)C1

− 32m2Rezcosh(m)sinh(m)C1 + 128mRez
3cosh(m)sinh(m)C1

+ 28m2Rez
3cosh(m)sinh(m)C1 − 3Rezsinh(2m)C1

+Rez
3sinh(2m)C1 + 256Recosh(m)sinh(mz)C1

+ 2Resinh(2mz))C1)/(64m(m(cosh(m))− (sinh(m)))2C1).

(46)

Second-order problem:

F
(iv)
2 (z, C1, C2)−m2F

′′
2 (z, C1, C2)− F

(iv)
1 (z, C1) +m2F

′′
1 (z, C1

= C1F
(iv)
1 (z, C1)−m2C1F

′′
1 (z, C1) + C2F

(iv)
0 (z)−m2C2F

′′
0 (z)

ReC2F0(z)F
′′′
0 (z) +ReC1F1(z, C1)F

′′′
0 (z) +ReC1F0(z)F

′′′
1 (z, C1),

(47)

F2(0) = F2(1) = F
′
2(1) = F

′′
2 (0) = 0. (48)
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Note: On demand we will provide the solution of F2. For the second order
approximation, adding F0(z), F1(z, C1), and F2(z, C1, C2), we obtain F, where

F = F0(z) + F1(z, C1) + F2(z, C1, C2). (49)

Substituting Eq. (45) in Eq. (16a), we obtain the residual as:

Re(z, C1, C2) = F(iv)(z)−m2F(z) +ReF(z)F(z). (50)

We obtain the expression for the residual R, using Mathematica 7.
Determination of Constants (Ci, i = 1, 2)
Here for constants C1 and C2, we use the Method [15, 16]:

R(k1, C1) = R(k2, C2) = 0, (51)

where ki ∈ (0, 1) for i = 1, 2 with C1 = −0.7939381382939315 and C2 =
0.021809256981632913. Using these constants in Eq. (45), we get the second
order OHAM approximation, whose results are given in Table1, Table 2 and
Figures (2-7), at different magnetic fields and Reynolds numbers.

5. He’s variational iteration method

In this section we apply variational iteration method [23, 24, 25, 26] to the
boundary value problem given in (16a-16b). More recently Herisanu and Mar-
inca an improvement of this method was recently proposed in [27], where they
suggested an optimal variational iteration algorithm.

In [25, 26], correction functional for Eq. (17) can be written as

Fn+1(z) = Fn(z) +

∫ z

0

λ(ξ)(LFn(ξ) +NF̃n(ξ)− g(ξ))dξ, (52)

where L and N are linear and nonlinear operators, respectively, g(ξ) is the
source homogeneous term and λ is a general Lagrange’s multiplier which can be
identified optimally via the variational theory, and F̃n as a restricted variation
which means δF̃n = 0. Applying VIM to the given problem (16a-16b), we obtain
the correction functional as

Fn+1(z) = Fn(z) +

∫ z

0

λ(ξ)

(
F (iv)
n (ξ)−m2F

′′
n(ξ) +ReFn(ξ)F

′′
n(ξ)

)
dξ. (53)

Taking variation of both sides with respect to independent variable Fn and after
some manipulations applying integration by parts four times we obtain

δFn+1 = (1− λ
′′′
)δFn + λ

′′
δF

′
n + λ

′
δF

′′
n + λδF

′′′
n +

∫ z

0

λ(iv)δFndξ. (54)

Applying the conditions δFn+1 = 0, this leads to the following conditions

(1− λ
′′′
) |ξ=z= 0, λ

′′ |ξ=z= 0, λ
′ |ξ=z= 0, λ |ξ=z= 0, λ(iv) |ξ=z= 0, (55)

which gives

λ(ξ) =
(ξ − z)3

3!
(56)
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Figure 2. Comparison of squeezing flow for a fixed magnetic
field effect m = 1 and increasing Reynolds numbers Re =
1, 2, 3, 4.

Substituting this value of Lagrange’s multiplier into the functional (48), we ob-
tain the iteration formula

Fn+1(z) = Fn(z)+

∫ z

0

(ξ − z)3

3!

(
F (iv)
n (ξ)−m2F

′′
n (ξ)+ReFn(ξ)F

′′′
n (ξ)

)
dξ. (57)

First we have apply the above functional for . , and then for better accuracy
VIM has been combined with Pade approximation. The results of VIM Pade
are plotted as shown in Fig. 7, which are still not comparable with second order
OHAM. The other major drawback in VIM for higher values of is the occurrence
of tedious and lengthy expressions and their calculations.

6. Results and discussions

Comparisons of results have been made through different Reynolds numbers
Re and magnetic field effect m. Fig. 2 shows comparisons of F (z) for a fixed
magnetic field m = 1 with increasing Reynolds numbers Re = 1, 2, 3, 4. It is
observed that increasing Reynolds number Re, slightly effect the OHAM results
obtain for the squeezing flow. Fig. 3 shows comparisons of F (z) for a fixed
magnetic field m with increasing Reynolds numbers Re = 1, 4, 10. It is observed
that much increase in Reynolds numbers affect the results. This is possible as
the flow being viscous which hold good for low Reynolds numbers.
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Figure 3. Comparison of squeezing flow for a fixed magnetic
field effect m = 1 and increasing Reynolds numbers Re =
1, 4, 10.
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Figure 4. TComparison of squeezing flow for a fixed Reynolds
number Re = 1 and increasing magnetic field effect m =
1, 2, 3, 4, 8, 20.

Fig. 4 shows comparisons of F (z) for a fixed Reynolds number with increasing
magnetic field effect m = 1, 2, 3, 4, 8, 20. It is observed that fluid flow is affected
with the application of increasing magnetic field effect m.

Fig. 5 also shows comparisons of F (z) for a fixed Reynolds number Re = 1
with a sharp increase in the magnetic field effect for m = 1, 2, 3, 4, 8, 20 for a
clear view. It is observed that fluid flow is much affected with sharp increase in
the magnetic field effect m.
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Table 1

0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.150265 0.15293 0.154955 0.156218 0.175911 0.139679
0.2 0.297424 0.302387 0.306107 0.308363 0.344336 0.27576
0.3 0.438387 0.444965 0.449782 0.452557 0.498671 0.40527
0.4 0.570093 0.57739 0.582554 0.585287 0.633941 0.526298
0.5 0.68952 0.696569 0.701324 0.703518 0.747277 0.638084
0.6 0.793695 0.799621 0.803366 0.804726 0.838004 0.740576
0.7 0.879695 0.883885 0.886307 0.886838 0.907244 0.83335
0.8 0.944641 0.946898 0.948052 0.948051 0.956954 0.913787
0.9 0.985687 0.98635 0.986634 0.986529 0.988387 0.974489
1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 2

x m=1 m=3 m=4 m=8 m=20

0. 0.0 0.0 0.0 0.0 0.0
0.1 0.150265 0.13709 0.130403 0.11507 0.105312
0.2 0.297424 0.272583 0.259843 0.230068 0.210625
0.3 0.438387 0.404759 0.387214 0.344866 0.315938
0.4 0.570093 0.531649 0.511107 0.459205 0.421249
0.5 0.68952 0.650894 0.629618 0.572545 0.526551
0.6 0.793695 0.759591 0.740103 0.683769 0.631824
0.7 0.879695 0.854106 0.838843 0.790543 0.736971
0.8 0.944641 0.929845 0.920578 0.887936 0.841352
0.9 0.985687 0.980966 0.977843 0.965381 0.94035
1.0 1.0 1.0 1.0 1.0 1.0

Fig. 6 shows comparisons of second order OHAM solutions with fifth order
VIM Pade. VIM Pade is a kind of modified VIM, in which a Pade approximant
is combined with typical VIM, which produced good results at the extended
domain, but it is clear from the Fig. 7, that second order OHAM solution is
much better than the fifth iterative VIM Pade solution. VIM Pade even fail to
satisfy the boundary conditions at and this is not the case with OHAM.

Table 1 and Table 2 are constructed to see the behavior of OHAM results
at discrete points of the desired domain by varying Reynolds number Re and
magnetic field effect m. A special rhythm of the results and the satisfaction of
the boundary conditions give guarantee that OHAM capture the exact behavior
of squeezing flow.

In Table 3 and Table 4 OHAM solution is compared with the numerical results
calculated by Range-Kutta Method (RK-4), for various Reynolds numbers and
different magnetic field effect. It can be seen from the tables (3-4) that OHAM
results are matching the numerical results.



1092 S. Islam, Murad Ullah, Gul Zaman, M. Idrees

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

z

FH
zL

m=20

m=8

m=4

m=1

Figure 5. Comparison of squeezing flow for a fixed Reynolds
number Re = 1 and increasing magnetic field effect m =
1, 4, 8, 20.

Table 3. m=1

x Numerical OHAM Numerical OHAM Numerical OHAM
Re=1 Re=1 Re=4 Re=4 Re=10 Re=10

0. 0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.150294 0.150265 0.158104 0.156218 0.167616 0.175911
0.2 0.297481 0.297424 0.311962 0.308363 0.329031 0.344336
0.3 0.438467 0.438387 0.457539 0.452557 0.478907 0.498671
0.4 0.570189 0.570093 0.591193 0.585287 0.613252 0.633941
0.5 0.689624 0.68952 0.709771 0.703518 0.729428 0.747277
0.6 0.793796 0.793695 0.810642 0.804726 0.825843 0.838004
0.7 0.879779 0.879695 0.891666 0.886838 0.901576 0.907244
0.8 0.944696 0.944641 0.95112 0.948051 0.901576 0.956954
0.9 0.985707 0.985687 0.987612 0.986529 0.988978 0.988387
1.0 1.0 1.0 1.0 1.0 1.0 1.0

7. Conclusion

In this paper, a squeezed axisymmetric fluid flow between two parallel plates
under a transverse magnetic field is analyzed. We applied a new powerful ana-
lytic technique, OHAM for the reduced nonlinear boundary value problem. For
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Table 4. Re=1

x Numerical OHAM Numerical OHAM Numerical OHAM
m=3 m=3 m=8 m=8 m=20 m=20

0. 0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.137044 0.13709 0.114976 0.11507 0.105391 0.105312
0.2 0.272494 0.272583 0.229882 0.230068 0.210782 0.210625
0.3 0.404637 0.404759 0.344604 0.344866 0.316173 0.315938
0.4 0.531508 0.531649 0.458904 0.459205 0.421563 0.421249
0.5 0.650756 0.650894 0.572276 0.572545 0.526952 0.526551
0.6 0.759478 0.759591 0.683628 0.683769 0.632324 0.631824
0.7 0.854035 0.854106 0.790607 0.790543 0.737586 0.736971
0.8 0.929817 0.929845 0.888173 0.887936 0.842051 0.841352
0.9 0.980963 0.980966 0.965578 0.965381 0.940861 0.94035
1.0 1.0 1.0 1.0 1.0 1.0 1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

z

FH
zL

OHAM

VIM Pade

Figure 6. : Comparison between OHAM and VIM with Pade
approximation of squeezing flow for a fixed Reynolds number
Re = 1 and magnetic field effect m = 1.

comparison, the same problem is also solved by VIM and numerical method
(RK-4). Furthermore, this method provides us a convenient way to control the
convergence and we can easily adjust the desired convergence regions. This ap-
proach is simple in applicability, as it does not require discretization like other



1094 S. Islam, Murad Ullah, Gul Zaman, M. Idrees

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

z

FH
zL

Numerical

OHAM

Figure 7. Comparison between OHAM and Numerical solu-
tion of squeezing flow for a fixed Reynolds number Re = 1 and
magnetic field effect m = 1.

numerical and approximate methods. Moreover, this technique is fast converg-
ing to the exact solution and requires less computational work. This confirms
our belief that the efficiency of the OHAM gives it much wider applicability.
Mathematica software is used for symbolic derivations of some of the equations.
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