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STABILITY PROPERTIES OF A DELAYED VIRAL

INFECTION MODEL WITH LYTIC IMMUNE RESPONSE†

FANG SONG, XIA WANG AND XINYU SONG∗

Abstract. In this paper, a class of more general delayed viral infection
model with lytic immune response is proposed by Song et al.[1] ([Journal
of Mathematical Analysis Application 373 (2011), 345-355). We derive the
basic reproduction numbers R0 and R∗

0 for the viral infection, and establish
that the global dynamics are completely determined by the values of R0

and R∗
0 . If R0 ≤ 1, the viral-free equilibrium E0 is globally asymptotically

stable; if R∗
0 ≤ 1 < R0, the immune-free equilibrium E1 is globally asymp-

totically stable; if R∗
0 > 1, the chronic-infection equilibrium E2 is globally

asymptotically stable by using the method of Lyapunov function.
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Key words and phrases : Viral infection, Immune response, Global stabil-
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1. Introduction

Mathematical models can provided insights into the dynamics of viral load
in vivo. A basic viral infection model([2]) has been widely used for studying
the dynamics of infections agents such as hepatitis B virus(HBV), hepatitis C
virus(HCV), and human immunodeficiency virus(HIV). This is because these
mathematical models may play a significant role in the development of a better
understanding of the disease and the various drug therapy strategies used against
it([3-5]).

Recently, there have been a lot of papers on virus dynamics with in-host,
some include the immune response directly [2,3,5-11], others do not contain the
immune response [12-19]. During viral infections, the host immune system reacts
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with innate and antigen-specific immune response. Both types of response can
be subdivided broadly into lytic and non-lytic components. Lytic components
kill infected cells, whereas the non-lytic inhibit viral replication through soluble
mediators. As a part of the innate response, cytotoxic T lymphocytes (CTLs)
kill infected cells, whereas antibodies neutralize free virus particles and thus,
inhibit the infection of susceptible cells. In addition, CD4+ and CD8+ T cells
can secrete cytokines that inhibit viral replication(e.g., IFN-γ and tumor necrosis
factor α(TNF-α)). In order to investigate the role of direct lytic and non-lytic
inhibition of viral replication by immune cells in viral infections, Bartholdy et al.
[6] and Wodarz et al. [9] constructed a mathematical model describing the basic
dynamics of the interaction between susceptible host cells, a virus population,
and immune response, which is shown graphically in Fig.1 and described by the
following differential equations:





ẋ = s− dx− βxy

1 + qz
,

ẏ =
βxy

1 + qz
− ay − pyz,

ż = cy − bz,

(1.1)

where x is the number of susceptible host cells, y is the number of virus popula-
tion and z is the number of immune response; susceptible host cells are generated
at a rate s, die at a rate dx and become infected by virus at a rate βxy. Virus
replication is inhibited by the immune response at a rate 1+qz; infected cells die
at a rate ay and killed by the immune system at a rate pyz. This corresponds
to lytic effector mechanisms; the immune response is assumed to get stronger
at a rate proportional to the number of infected cells, cy, and also decays ex-
ponentially at a rate proportional to its current strength, bz. Note that the
variable z represents overall immunity that can be generated in response to a
virus infection. The parameter p expresses the strength of the lytic component,
whereas the parameter q expresses the efficacy of the non-lytic component.

By the similar theoretical analysis to population dynamical systems and epi-
demic models [18], time delays should be considered in viral models [11,13,17],
and N.Burić et al. [20] condidered the effects of the time delay for immune re-
sponse on two-dimensional system which consists of infected cells and CTLs,
Canabarro et al. [21] investigated the effects of a time delay on the four-
dimensional system with ż = cy(t− τ)z(t− τ)− bz, and Wang et al. [11] studied
the effects of the time delay for immune response on the three-dimensional sys-
tem with ż = cy(t− τ)− bz.

Note that the immune response after viral infection is universal and necessary
to eliminate or control the disease. Antibodies cytokinesis, natural killer cells,
and T cells are essential components of a normal immune response to a viral.
Indeed, in most viral infections, cytotoxic T lymphocytes (CTLs) play a very
important role in antiviral defense by attacking virus infected cells. It is believed
that they are the main host immune factor that limits the development of virus
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Fig. 1 Schematic representation of the mathematical model (1.1)

replication in vivo and thus determines virus load [7]. Therefore, the population
dynamics of viral infection with CTL response has been paid much attention in
the last few decades [10,11]. In this paper, we consider the following model with
delay between the time a cell begin to be infected and the time of emission of
virus particles from this cell [1,14,19].





ẋ = s− dx− βxy,

ẏ = βe−mτx(t− τ)y(t− τ)− ay − pyz,

ż = cyz − bz,

(1.2)

where the state variables x, y, z and the parameters s, a, b, c, d, p and β have the
same biological meanings as in the model (1.1). In model (1.2), the term e−mτ

accounts for cells that are infected at time t but die before becoming productively
infected τ time units later. The production of CTLs depends not only on the
population of infected cells but also depends on the population of CTL cells,
then ż = cyz − bz.

This paper is organized as follows: In the next section, we give the existences
of the equilibria and basic reproduction number. In Section 3, the global dy-
namics are established. Biological implications of our results are discussed in
Section 4.
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2. Equilibria and positive invariance

If we denote the basic reproduction number of model (1.2) as

R0 =
βse−mτ

ad
,

and the immune response reproduction number of model (1.2) as

R∗
0 =

βcse−mτ

acd+ abβ
,

then the equilibria of system (1.2) as follows:
(i) if R∗

0 < R0 < 1, then system (1.2) only has the viral-free equilibrium

E0 = (x0, 0, 0) = (
s

d
, 0, 0);

(ii) if R∗
0 < 1 < R0, then system (1.2) has immune-free equilibrium E1 =

(x1, y1, 0) except for E0, where

x1 =
cs

cd+ bβ
, y1 =

βse−mτ − ad

βa
=

d

β
(R0 − 1);

(iii) if 1 < R∗
0 < R0, then system (1.2) has a positive equilibrium E2 = (x, y, z)

except for E0 and E1, where

x =
cs

cd+ bβ
, y =

b

c
, z =

βsce−mτ − acd− abβ

cdp+ bpβ
=

a

p
(R∗

0 − 1).

Next, we show that model (1.2) is biologically acceptance in the sense that
no population goes negative.

To study the stability of equilibria and investigate the dynamics of model (1.2)
when τ ≥ 0, we need to consider a suitable phase space and a feasible region.
For τ > 0, we denote by C = C([−τ, 0], R3) the Banach space of continuous
functions mapping from the interval [−τ, 0] to R equipped with the sup-norm
‖ϕ‖ = sup

−τ≤θ≤0
{|ϕ1(θ)|, |ϕ2(θ)|, |ϕ3(θ)|}, where ϕ = (ϕ1, ϕ2, ϕ3). Further, the

nonnegative cone of C is defined as C+ = C([−τ, 0], R3
+).

The initial condition for system (1.2) is given as

x(θ) = ϕ1(θ) ≥ 0, y(θ) = ϕ2(θ) ≥ 0, z(θ) = ϕ3(θ) ≥ 0, −τ ≤ θ ≤ 0, (2.1)

and a solution of system (1.2) is denoted by (x(t), y(t), z(t)).
The following result establish the positivity and boundedness of solution for

system (1.2) with initial condition (2.1).

Theorem 2.1. Under the above initial condition (2.1), then x(t), y(t) and z(t)
are all non-negative and bounded for all t ≥ 0 at which the solution exists.
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Proof. From system (1,2), we have

x(t) = x(0)e−
∫ t
0
(d+βy(ξ))dξ +

∫ t

0

se−
∫ t
η
(d+βy(ξ))dξdη,

y(t) = y(0)e−
∫ t
0
(a+pz(ξ))dξ +

∫ t

0

βx(η − τ)y(η − τ)e−mτe−
∫ t
η
(a+pz(ξ))dξdη,

z(t) = z(0)e
∫ t
0
(cy(ξ)−b)dξ.

(2.2)
Positivity immediately follows from the above integral forms (2.2) and initial
condition (2.1).

For boundedness of the solution, we define

G(t) =
ce−mτ

a
x(t) +

c

a
y(t+ τ) +

p

a
z(t+ τ),

and γ = min{d, a, b}.
By non-negativity of the solution, it follows that

Ġ(t) =
cse−mτ

a
− dce−mτ

a
x(t)− cy(t+ τ)− pb

a
z(t+ τ) ≤ cse−mτ

a
− γG(t).

This implies that G(t) is bounded, and so are x(t), y(t) and z(t). This completes
the proof. ¤

3. Global dynamics

3.1. Global stability of the viral-free equilibrium E0. In the following, we
can obtain globally stability of E0 when R0 ≤ 1 by using a Lyapunov function.

Theorem 3.1. The viral-free equilibrium E0 is globally asymptotically stable if
R0 ≤ 1.

Proof. Define a Lyapunov function

L0 = L0(xt, y(t), zt) = xt(0)−x0 ln
xt(0)

x0
+emτy(t)+

pemτ

c
zt(0)+β

∫ 0

−τ
xt(θ)yt(θ)dθ, (3.1)

where xt(θ) = x(t + θ), zt(θ) = z(t + θ) for θ ∈ [−τ, 0]. Therefore, x(t) =
xt(0), z(t) = zt(0) in this notation.

Noting that f(u) = u − lnu, u ∈ R+ has the global minimum at u = 1 and
f(1) = 1, we have

xt(0)− x0 ln
xt(0)

x0
= x0(

xt(0)

x0
− ln

xt(0)

x0
) > x0.

The Lyapunov function L0 is non-negative definite in the bouned feasible region
with respect to the viral-free equilibrium E0. Calculating the time derivative of
L0 along the positive solution of model (1.2), we can obtain

L̇0

∣∣∣
(1.2)

= ẋ(t)− x0

x(t)
ẋ(t) + emτ ẏ(t) +

pemτ

c
ż(t) + βxy − βx(t− τ)y(t− τ)

= s− dx(t)− x0

x(t)
(s− dx(t)− βx(t)y(t))− ay(t)emτ − pbemτ

c
z(t).

(3.2)
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Note that s = dx0, R0 =
βse−mτ

ad
, from (3.2), we get

L̇0

∣∣∣
(1.2)

= dx0(2− x(t)

x0
− x0

x(t)
) + (βx0 − aemτ )y(t)− pbemτ

c
z(t)

= dx0(2− x(t)

x0
− x0

x(t)
) + aemτ (R0 − 1)y(t)− pbemτ

c
z(t).

(3.3)

Since 2− x(t)

x0
− x0

x(t)
≤ 0 and R0 ≤ 1, we can obtain that L̇0

∣∣∣
(1.2)

≤ 0 for all

x(t), y(t), z(t) ≥ 0, and L̇0

∣∣∣
(1.2)

≡ 0 if and only if (x, y, z) = (x0, 0, 0). Then the

globally asymptotical stability of E0 follows from Lyapunov LaSalle Invariance
Principle([22]). ¤

3.2. Global stability of the immune-free equilibrium E1. In this subsec-
tion, when R∗

0 ≤ 1 < R0, then we can establish the following result for the
immune-free equilibrium E1.

Theorem 3.2. The immune-free equilibrium E1 is globally asymptotically stable
if R∗

0 ≤ 1 < R0.

Proof. Let g(u) = u− 1− lnu, and define a Lyapunov function

L1 = L1(xt, y(t), zt) = x1g(
xt(0)

x1
) + y1e

mτg(
y(t)

y1
) +

pemτ

c
zt(0)

+βx1y1

∫ 0

−τ

g(
xt(θ)yt(θ)

x1y1
)dθ.

(3.4)

Calculating the time derivative of L1 along the positive solutions of model (1.2),
we have

L̇1

∣∣∣
(1.2)

= ẋ(t) − x1

x(t)
ẋ(t) + e

mτ
(ẏ(t) − y1

y(t)
ẏ(t)) +

pemτ

c
ż(t) + βx(t)y(t)

−βx(t − τ)y(t − τ) − βx1y1 ln
x(t)y(t)

x(t − τ)y(t − τ)

= s − dx(t) − x1

x(t)
(s − dx(t) − βx(t)y(t)) − ay(t)e

mτ − y1

y(t)
βx(t − τ)y(t − τ)

+ay1e
mτ

+ py1z(t)e
mτ − pbemτ

c
z(t) − βx1y1 ln

x(t)y(t)

x(t − τ)y(t − τ)
.

(3.5)
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Using s = dx1+βx1y1, βx1y1 = ay1e
mτ , R∗

0 =
βcse−mτ

acd+ abβ
, from (3.5), we have

L̇1

∣∣∣
(1.2)

= dx1(2− x(t)

x1
− x1

x(t)
) + βx1y1(2− x1

x(t)
) + (βx1 − aemτ )y(t)

+pz(t)emτ (y1 − b

c
)− y1

y(t)
βx(t− τ)y(t− τ)− βx1y1 ln

x(t)y(t)

x(t− τ)y(t− τ)

= dx1(2− x(t)

x1
− x1

x(t)
) + pz(t)emτ · dc+ bβ

βc
(R∗

0 − 1)

+βx1y1
(
2− x1

x(t)
− ln

x(t)y(t)

x(t− τ)y(t− τ)

)
− y1

y(t)
βx(t− τ)y(t− τ)

= dx1(2− x(t)

x1
− x1

x(t)
) + pz(t)emτ · dc+ bβ

βc
(R∗

0 − 1)

−βx1y1
[
g(

x(t− τ)y(t− τ)

x1y(t)
) + ln

x(t− τ)y(t− τ)

x1y(t)
+ g(

x1

x(t)
) + ln

x1

x(t)

+ ln
x(t)y(t)

x(t− τ)y(t− τ)

]

= dx1(2− x(t)

x1
− x1

x(t)
) + pz(t)emτ · dc+ bβ

βc
(R∗

0 − 1)

−βx1y1
[
g(

x(t− τ)y(t− τ)

x1y(t)
) + g(

x1

x(t)
)
]
..

Noting that 2 − x(t)

x1
− x1

x(t)
≤ 0, R∗

0 ≤ 1, and g(u) : R+ → R has the global

minimum at u = 1 and g(1) = 0. Hence, x1, y1 > 0 ensures that L̇1

∣∣∣
(1.2)

≤ 0, and

L̇1

∣∣∣
(1.2)

≡ 0 if and only if (x, y, z) = (x1, y1, 0). Then the globally asymptotical

stability of E1 follows from Lyapunov LaSalle Invariance Principle([22]). ¤

3.3. Global stability of the positive equilibrium E2. Lastly, we consider
the case 1 < R∗

0 < R0, then discuss the stability of the positive (chronic-
infection) equilibrium E2.

Theorem 3.3. The positive equilibrium E2 is globally asymptotically stable
when 1 < R∗

0 < R0 hold.

Proof. Let g(u) = u− 1− lnu, and define a Lyapunov function

L2 = L2(xt, y(t), zt) = xg(
xt(0)

x
) + yemτg(

y(t)

y
) +

pzemτ

c
g(

zt(0)

z
)

+βxy

∫ 0

−τ

g(
xt(θ)yt(θ)

xy
)dθ.

(3.6)
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Calculating the time derivative of L2 along the positive solutions of model (1.2),
we obtain

L̇2

∣∣∣
(1.2)

= ẋ(t) − x

x(t)
ẋ(t) + e

mτ
(ẏ(t) − y

y(t)
ẏ(t)) +

pzemτ

c
(ż(t) − z

z(t)
ż(t))

βx(t)y(t) − βx(t − τ)y(t − τ) − βxy ln
x(t)y(t)

x(t − τ)y(t − τ)

= s − dx(t) − x

x(t)
(s − dx(t) − βx(t)y(t)) − ay(t)e

mτ

− y

y(t)
βx(t − τ)y(t − τ) + aye

mτ
+ pyz(t)e

mτ − pbemτ

c
z(t) − py(t)ze

mτ

+
pbemτ

c
z − βxy ln

x(t)y(t)

x(t − τ)y(t − τ)

= s − dx(t)
x

x(t)
s + dx + (βx − ae

mτ − pze
mτ

)y(t) + aye
mτ

+
pbzemτ

c
+ pyz(t)e

mτ

−pbemτ

c
z(t) − y

y(t)
βx(t − τ)y(t − τ) − βxy ln

x(t)y(t)

x(t − τ)y(t − τ)
.

(3.7)

Noting that

s = dx+ βxy, y =
b

c
, βxy = (ay + pyz)emτ

then from (3.7), we get

L̇2

∣∣∣
(1.2)

= dx(2− x(t)

x
− x

x(t)
) + βxy(2− x

x(t)
− ln

x(t)y(t)

x(t− τ)y(t− τ)
)

+p(y − b

c
)emτz(t)− y

y(t)
βx(t− τ)y(t− τ)

= dx(2− x(t)

x
− x

x(t)
)− βxy

[
g(

x(t− τ)y(t− τ)

xy(t)
) + ln

x(t− τ)y(t− τ)

xy(t)

+g(
x

x(t)
) + ln

x

x(t)
+ ln

x(t)y(t)

x(t− τ)y(t− τ)

]

= dx(2− x(t)

x
− x

x(t)
)− βxy

[
g(

x(t− τ)y(t− τ)

xy(t)
) + g(

x

x(t)
)
]
.

Since 2 − x(t)

x
− x

x(t)
≤ 0 and g(u) : R+ → R has the global minimum u = 1

and g(1) = 0. Hence, x, y, z > 0 ensures that L̇2

∣∣∣
(1.2)

≤ 0. By Theorem 5.3.1

of ([22]), it can be verified that L̇2

∣∣∣
(1.2)

≡ 0 if and only if (x, y, z) = (x, y, z).

Then the globally asymptotical stability of E2 follows from Lyapunov LaSalle
Invariance Principle ([22]). ¤

As a corollary, Theorem 3.3 implies that no sustained oscillation can occur in
our model (1.2).

Corollary 3.1. Assume 1 < R∗
0 < R0. For m ≥ 0 and τ > 0, system (1.2) has

no non-constant periodic solutions.
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4. Conclusions

In paper [1], Authors Song et al. have obtained the following results only:
(1) the viral-free equilibrium E0 of system (1.2) is indeed globally asymptot-

ically stable if R0 < 1;
(2) if R0 > 1 > R∗

0, then the immune-free response equilibrium E1 of system
(1.2) is locally asymptotically stable for any τ ≥ 0;

(3) if τ = 0 and R∗
0 > 1, then the positive equilibrium E2 of system (1.2) is

locally asymptotically stable;
(4) a conjecture: if τ > 0, then there will exists τ∗ ∈ I, such that the

equilibrium E2 is asymptotically stable for 0 ≤ τ < τ∗, and becomes unstable
for τ staying in some right neighborhood of τ∗, with a Hopf bifurcation occurring
when τ = τ∗, where the forms of τ∗, I are defined in [1].

However, in present paper, we have rigorously established the global dynamics
of model (1.2):

(a) if R0 ≤ 1, then all solutions converge to the viral-free equilibrium E0;
(b) if R∗

0 ≤ 1 < R0, then the immune-free equilibrium E1 is globally asymp-
totically stable;

(c) if R∗
0 > 1, then all positive solutions converge to the chronic-infection

equilibrium E2, where the forms of R0, R
∗
0, E0, E1, E2 are defined as the same

as in [1].
Our result establishing that no sustained-oscillation regime exists without cell

division even in the presence of intracellular delays is of particular interest in this
context, it shows that target-cell dynamics plays a crucial role in the dynamics
of viral infection in vivo. Mathematically, Theorem 3.3 is the complete result
on the global stability of the chronic-infection equilibrium for the virus infection
models with intracellular delays τ . The global stability result is essential for our
conclusion that the delay τ does not produce periodic oscillations for all positive
values of parameters.
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20. N. Burić, M. Mudrinic and N. Vasović, Time delay in a basic model of the immune re-

sponse, Chaos Solitons Fractals 12 (2001), 483-489.
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