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THE KARUSH-KUHN-TUCKER OPTIMALITY CONDITIONS

IN INTERVAL-VALUED MULTIOBJECTIVE PROGRAMMING

PROBLEMS

ELHAM HOSSEINZADE AND HASSAN HASSANPOUR∗

Abstract. The Karush-Kuhn-Tucker (KKT) necessary optimality condi-
tions for nonlinear diffrentiable programming problems are also sufficient
under suitable convexity assumptions. The KKT conditions in multiobjec-
tive programming problems with interval-valued objective and constraint
functions are derived in this paper. The main contribution of this paper is
to obtain the Pareto optimal solutions by resorting to the sufficient opti-
mality condition.
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1. Introduction

The occurrence of randomness and imprecision in the real world is inevitable
owing to some unexpected situations. Therefore, imposing the uncertainty upon
the conventional optimization problems is an interesting research topic.
The interval-valued optimization problems are closely related to the inexact
linear programming problems. Charnes et al. [6] considered the linear program-
ming problems in which the right-hand sides of linear inequality constraints
are closed intervals. Ishibuchi and Tanaka [11] considered multiobjective pro-
gramming problems with interval-valued objective funcions and proposed the
ordering relation between two closed intervals by considering the maximization
and minimization problems separately. Inuiguchi and Kume [10] formulated
and solved four kinds of goal programming problems with interval coefficients
in which the target values were also assumed to be closed intervals. Urli and
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Nadeau [19] used an interactive method to solve the multiobjective linear pro-
gramming problems with interval coefficients. They also proposed a method-
ology to transform a nondeterministic problem into a deterministic problem.
Chanas and Kuchta [5] presented an approach to unify the solution methods
proposed by Ishibuchi and Tanaka [11] and Rommelfanger et al. [15]. Also the
portfolio selection problem with interval objective functions were investigated
by Ida [9]. Recently, Oliveria and Antunes [13] provided an overview of multi-
objective linear programming problems with interval coefficients by illustrating
many numerical examples. Su et al. [18] proposed two interval parameter fuzzy
programming models for petroleum solid waste management. Qin and Huang et
al. [14] proposed an interval parameter fuzzy nonlinear optimization model for
stream water quality management under uncertainty. Benjamin [3] used interval
programming for underwater projecticle design optimization and multiobjective
decision making.

The KKT optimality conditions for the optimization problems (single-objective
and multiobjective programming problems) with interval- valued objective func-
tions and real-valued constraint functions were investigated by Wu [21, 22]. Also,
the necessary optimality conditions for single-objective nonlinear programming
problems with interval-valued objective and constraint functions has been con-
sidered by Wu [20]. This paper focuses on multiobjective programming problems
in wich both objective and constraint functions are interval-valued.
The remainder of the paper is organised as follows:
In Section 2, some preliminaries of intervals arithmatics are introduced. In Sec-
tion 3, multi-objective optimization problem with interval-valued objective and
constraint functions is formulated, a solution concept for this problem is pro-
vided and the KKT optimality conditions for the problem are derived. Also a
numerical example is solved for providing the basic techniques to compute the
Pareto optimal solutions by resorting to KKT conditions. Finally, Section 4 is
devoted to conclusion.

2. Preliminaries

Since the values of objective and constraint functions in our model are closed
intervals, we need to compare the closed intervals.
Let us denote by ϕ the class of all closed and bounded intervals in R. Throughout
this paper, when we say that A is a closed interval, it implicitly means that A is
also bounded. If A is a closed interval, we also adopt the notation A = [aL, aU ],
where aL and aU are the lower and upper end points of A, respectively.

Definition 1 ([20]). Let A = [aL, aU ] and B = [bL, bU ] be two closed intervals
in R. We say that A is less than or equal to B and write A ¹ B if and only if
aL 6 bL and aU 6 bU .
Also we say that A is less than B and write A ≺ B if and only if A ¹ B and
A 6= B. Equivalently, A ≺ B if and only if
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{
aL < bL,
aU 6 bU

or

{
aL 6 bL,
aU < bU

or

{
aL < bL,
aU < bU .

The function f : Rn → ϕ is called an interval-valued function, i.e., f(x) =
f(x1, ..., xn) is a closed interval in R for each x ∈ Rn. The interval-valued
function f can also be written as f(x) = [fL(x), fU (x)] where fL and fU are
real-valued functions defined on Rn and satisfy fL(x) 6 fU (x) for each x ∈ Rn.

Definition 2 ([22]). Let f be an interval-valued function defined on X ⊆ Rn

and x0 = (x
(0)
1 , ..., x

(0)
n ) ∈ X.

(i) We say that f is weakly differentiable at x0 if the real-valued functions fL

and fU are differentiable at x0 (which imply that all of the partial derivatives
∂fL/∂xi and ∂fL/∂xi exist at x0 for i = 1, ..., n).
(ii) We say that f is weakly continuously differentiable at x0 if the real-valued
functions fL and fU are continuously differentiable at x0 (i.e., all of the partial
derivatives of fL and fU exist on some neighborhoods of x0 and are continuous
at x0).

If f be a differentiable real-valued function defined on a nonempty open convex
subset X of Rn, then f is convex at x∗ if and only if

f(x) > f(x∗) +5f(x∗)T (x− x∗)

for each x ∈ X [2].
Similar to the definition of convexity for real-valued function [2] the notion of
convexity is defined for interval-valued function as follows:

Definition 3 ([20]). Let X be a nonempty convex subset of Rn and f be an
interval-valued function defined on X. We say that f is convex at x∗ if

f(λx∗ + (1− λ)x) ¹ λf(x∗) + (1− λ)f(x)

for each x ∈ X and λ ∈ (0, 1).

Proposition 1 ([20]). Let X be a nonempty convex subset of Rn and f be an
interval-valued function defined on X. The interval-valued function f is convex
at x∗ if and only if the real-valued functions fL and fU are convex at x∗.

3. Karush-Kuhn-Tucker optimality conditions

Consider a multiobjective interval-valued optimization problem (MIVP) as
follows:

(MIVP1) min f(x) = (f1(x), ..., fr(x))

subject to gi(x) ¹ bi i = 1, ...,m,

where fk(x) = [fL
k (x), f

U
k (x)] and gi(x) = [gLi (x), g

U
i (x)] are interval-valued

functions and bi = [bLi , b
U
i ], for k = 1, ..., r and i = 1, ...,m, and the relation

” ≺ ”, ” ¹ ” defined in Definition 1.
According to Definition 1, x = (x1, ..., xn) is a feasible solution of problem
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(MIVP1) if gLi (x) 6 bLi and gUi (x) 6 bUi for i = 1, ...,m. Let us denote by
X the set of feasible solutions of problem (MIVP1). Similar to usual multi-
objective problems, often there does not exist a point x ∈ X to minimize all
of the objective functions, simultaneously. Therfore we need to define another
notion of optimal solution, named Pareto optimal (efficient) solution.

Definition 4 ([16]). Let x∗ be a feasible solution of problem (MIVP1). We
say that x∗ is a Pareto optimal solution of problem (MIVP1) if there exists no
x̄ ∈ X such that fk(x̄) ¹ fk(x

∗) for each k ∈ {1, ..., r} and fh(x̄) ≺ fh(x
∗) for

at least one index h ∈ {1, ..., r}.
Let f and gi, i = 1, ...,m, be real-valued functions defined on Rn, and consider

the following optimization problem

(P) min f(x) = f(x1, ..., xn)

subject to gi(x) 6 0 i = 1, ...,m.

Suppose that the constraint functions gi are convex on Rn for i = 1, ...,m.
Then the feasible set X = {x ∈ Rn : gi(x) 6 0, i = 1, ...,m} is a convex
subset of Rn. The well-known Karush-Kuhn-Tucker conditions for problem (P)
is stated as follows.

Theorem 1 ([8]). Assume that the constraint functions gi : Rn → R are convex
on Rn for i = 1, ...,m. Let X = {x ∈ Rn : gi(x) 6 0, i = 1, ...,m} be the
feasible set and x∗ ∈ X. Suppose that the objective function f : Rn → R is
convex at x∗, and f and gi, i = 1, ...,m, are continuously differentiable at x∗. If
there exist (Lagrange) multipliers 0 6 µi ∈ R, i = 1, ...,m, such that

i) ∇f(x∗) +
m∑

i=1

µi∇gi(x
∗) = 0,

ii) µigi(x
∗) = 0 i = 1, ...,m,

then x∗ is an optimal solution of problem (P).

By using the ordering relation ” ¹ ”, the problem (MIVP1) can be written
as follows:

(MIVP2) min f(x) = (f1(x), ..., fr(x))

subject to gLi (x) 6 bLi i = 1, ...,m,

gUi (x) 6 bUi i = 1, ...,m.

It is obvious that the feasible sets of problems (MIVP1) and (MIVP2) are the
same. By re-nomination of the constraint functions, the problem (MIVP2) can
be written as follows:

(MIVP3) min f(x) = (f1(x), ..., fr(x))

subject to gi(x) 6 0 i = 1, ..., 2m,

where gi : Rn → R, i = 1, ..., 2m, are real-valued functions.
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Let X = {x ∈ Rn : gi(x) 6 0 , i = 1, ..., 2m} be the feasible set and
J(x∗) = {i : gi(x

∗) = 0, i = 1, ..., 2m}. We say that the constraint functions
gi, i = 1, ..., 2m, satisfy the Kuhn-Tucker constraint qualification at x∗ when
if ∇gi(x

∗)Td 6 0 for all i ∈ J(x∗), where d ∈ Rn, then there exists an n-
dimensional vector function a : [0, 1] → Rn such that a is right-differentiable at
0, a(0) = x∗, a(t) ∈ X for all t ∈ [0, 1], and there exists a real number α > 0
with a′+(0) = αd [20].

In the proof of Theorem 2, the Motzkin’s theorem of the alternative is needed.
It states that, given matrices A 6= 0 and C, exactly one of the following systems
has a solution:
System I: Ax < 0, Cx 6 0 for some x ∈ Rn;
System II: ATλ+ CTµ = 0 for some µ > 0 and λ > 0 with λ 6= 0.

Theorem 2 (KKT Optimality Conditions). Suppose that x∗ is a pareto optimal
solution of problem (MIVP3) and fk : Rn → ϕ, k = 1, ..., r and gi, i = 1, ..., 2m,
are weakly differentiable at x∗. Also assume that the constraint functions gi,
i = 1, ..., 2m, satisfy the Kuhn-Tucker constraint qualification at x∗. Then there
exist multipliers 0 6 µi ∈ R, i = 1, ..., 2m, and 0 6 ζk = (ζLk , ζ

U
k ), with ζk 6= 0

for some k ∈ {1, ..., r}, such that

r∑

k=1

ζLk ∇fL
k (x

∗) +
r∑

k=1

ζUk ∇fU
k (x∗) +

2m∑

i=1

µi∇gi(x
∗) = 0, (1)

µigi(x
∗) = 0 i = 1, ..., 2m. (2)

Proof. Since each fk is weakly differentiable at x∗, by Definition 2, fL
k and fU

k

are differentiable at x∗. Suppose that there exists d ∈ Rn such that



∇fL
k (x

∗)Td < 0,
∇fU

k (x∗)Td < 0,
∇gi(x

∗)Td 6 0 for i ∈ J(x∗).
(3)

Since gi , i = 1, ..., 2m, satisfy the Kuhn-Tucker constraint qualification at x∗

and fL
k is differentiable at x∗, we have

fL
k (a(t)) = fL

k (x
∗) +∇fL

k (x
∗)T (a(t)− x∗) + ‖a(t)− x∗‖ε(a(t),x∗)

= fL
k (x

∗) +∇fL
k (x

∗)T (a(t)− a(0)) + ‖a(t)− a(0)‖ε(a(t),a(0))
= fL

k (x
∗)+ t ∇fL

k (x
∗)T (

a(0 + t)− a(0)

t
)+ ‖a(t)− a(0)‖ε(a(t),a(0))

where ε(a(t),a(0)) → 0 as ‖a(t)− a(0)‖ → 0. Therefore, when t → 0+, we have

a(0 + t)− a(0)

t
→ a′+(0) = αd, where α > 0.

Since ∇fL
k (x

∗)d < 0, we have fL
k (a(t1)) < fL

k (x
∗) for a sufficiently small t1 > 0.

Similar statements are hold for fU
k , so fU

k (a(t2)) < fU
k (x∗) for a sufficiently

small t2 > 0. Therefore, we have fL
k (a(t)) < fL

k (x
∗) and fU

k (a(t)) < fU
k (x∗)

for a sufficiently small t (t < min{t1, t2}); concequently, fk(a(t)) ≺ fk(x
∗) for
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a sufficiently small t, which contradicts the fact that x∗ is a Pareto optimal
solution of problem (MIVP3). Therefore, the system (3) has no solution.
Now let A be the matrix whose rows are ∇fL

k (x
∗)T and ∇fU

k (x∗)T and C be
the matrix whose rows are ∇gi(x

∗)T for i ∈ J(x∗). According to the Motzkin’s
theorem of the alternative, since the system (3), has no solution, there exist
multipliers 0 6 ζk = (ζLk , ζ

U
k ) with ζk 6= 0 for some k ∈ {1, ..., r}, and 0 6 µi ∈ R

for i ∈ J(x∗) such that
r∑

k=1

ζLk ∇fL
k (x

∗) +
r∑

k=1

ζUk ∇fU
k (x∗) +

∑

i∈J(x∗)

µi∇gi(x
∗) = 0.

Set µi = 0 for i ∈ {1, ..., 2m} \ J(x∗). Then we have

r∑

k=1

ζLk ∇fL
k (x

∗) +
r∑

k=1

ζUk ∇fU
k (x∗) +

2m∑

i=1

µi∇gi(x
∗) = 0,

µigi(x
∗) = 0 for all i = 1, ..., 2m

and the proof is completed. ¤
The above theorem states the necessary conditions for Pareto optimality of

the feasible point x∗. The following theorem states some sufficient conditions
for Pareto optimality.

Theorem 3 (sufficient conditions). Assume that the real-valued constraint func-
tions gi : Rn → R are convex on Rn and continuously differentiable at x∗ ∈ X
for i = 1, ..., 2m. Also suppose that the interval-valued objective functions fk
are convex and continuously differentiable at x∗ for k = 1, ..., r. If there exist
(Lagrange) multipliers ζLk , ζ

U
k > 0, k = 1, ..., r, and µi > 0, i = 1, ..., 2m, such

that

i)

r∑

k=1

ζLk ∇fL
k (x

∗) +
r∑

k=1

ζUk ∇fU
k (x∗) +

2m∑

i=1

µi∇gi(x
∗) = 0,

ii) µigi(x
∗) = 0 i = 1, ..., 2m,

then x∗ is a Pareto optimal solution of problem (MIVP3).

Proof. Since fk are weakly continuously differentiable at x∗, fL
k and fU

k are
continuously differentiable at x∗ for k = 1, ..., r. Define the real-valued function

f̄(x) = ζL1 f
L
1 (x) + ...+ ζLr f

L
r (x) + ζU1 fU

1 (x) + ...+ ζUr fU
r (x). (4)

Since fk’s are convex, according to Proposition 1 fL
k ’s and fU

k ’s are also convex.
Therefore, f̄ is convex and continuously differentiable at x∗. Now we have

∇f̄(x) = ζL1 ∇fL
1 (x) + ...+ ζLr ∇fL

r (x) + ζU1 ∇fU
1 (x) + ...+ ζUr ∇fU

r (x).

By the assumptions (i) and (ii) and Theorem 1, x∗ is an optimal solution of the
real-valued objective function f̄(x) subject to the same constraints of problem
(MIVP3), i.e., f̄(x∗) 6 f̄(x̄) for each x̄(6= x∗) ∈ X. Now suppose that x∗ is not a
Pareto optimal solution of problem (MIVP3). Then, based on Definition 3, there
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exists x̄ ∈ X such that fk(x̄) ¹ fk(x
∗) for each k = 1, ..., r and fh(x̄) ≺ fh(x

∗)
for at least one index h. Therefore, from (4), we have f̄(x̄) < f̄(x∗), since ζLk > 0
and ζUk > 0 for all k = 1, ..., r, which contradicts the fact that f̄(x∗) 6 f̄(x̄).
This shows that x∗ is a Pareto optimal solution of problem (MIVP3) which
proves the theorem. ¤

4. Numerical example

We are going to solve a numerical example by applying Theorem 3. Consider
the following biobjective programming problems with interval-valued objective
and constraint functions:

min (f1(x1, x2), f2(x1, x2)) = ([x2
1 + x2

2 + 1, x2
1 + x2

2 + 2],

[2x2
1 + 2x2

2 + 3, 2x2
1 + 2x2

2 + 4])
subject to [1, 6]x1 + [1, 2]x2 º [1, 12]

x1 > 0 , x2 > 0.
Then we have

fL
1 (x1, x2) = x2

1 + x2
2 + 1 , fU

1 (x1, x2) = x2
1 + x2

2 + 2
fL
2 (x1, x2) = 2x2

1 + 2x2
2 + 3 , fU

2 (x1, x2) = 2x2
1 + 2x2

2 + 4
and

g1(x1, x2) = −x1 − x2 + 1 , g2(x1, x2) = −6x1 − 2x2 + 12
g3(x1, x2) = −x1 , g4(x1, x2) = −x2

It is easy to see that the above functions satisfy the assumptions of Theorem
3. We have to find x1, x2 and µi, ζ

L
i , ζ

U
i for i = 1, 2 such that:

ζL1

[
2x1

2x2

]
+ ζL2

[
4x1

4x2

]
+ ζU1

[
2x1

2x2

]
+ ζU2

[
4x1

4x2

]
+ µ1

[−1
−1

]
+ µ2

[−6
−2

]
=

[
0
0

]





1− x1 − x2 6 0
12− 6x1 − 2x2 6 0
µ1(1− x1 − x2) = 0

µ2(12− 6x1 − 2x2) = 0
xi, µi > 0 , ζLi , ζ

U
i > 0 i = 1, 2

(5)

that is, we have to find a solution for the following simultaneous equations which
satisfy the conditions (5).

{
2ζL1 x1 + 4ζL2 x1 + 2ζU1 x1 + 4ζU2 x1 − µ1 − 6µ2 = 0
2ζL1 x2 + 4ζL2 x2 + 2ζU1 x2 + 4ζU2 x2 − µ1 − 2µ2 = 0

After some algebraic calculations, we obtain
(x∗

1, x
∗
2) = (9/5, 3/5)

ζL1 = ζU1 = 1/2 and ζL2 = ζU2 = 1/4,
µ1 = 0 and µ2 = 6/5 .
Since g2(9/5, 3/5) = 0, condition (ii) in Theorem 3 is satisfied, i.e., µ2g2(x

∗) = 0.
Therefore, (x∗

1, x
∗
2) = (9/5, 3/5) is a Pareto optimal solution.
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5. Conclusion

The Karush-Kuhn-Tucker (KKT) optimality conditions in multiobjective pro-
gramming problems with interval-valued objective and constraint functions have
been successfully obtained in this paper.
The main contribution of this paper is to obtain the Pareto optimal solutions
by applying the KKT conditions. Of course, many other methodologies can
be developed to solve the interval-valued optimization problems based on the
classical techniques in conventional optimization problems. We have to mention
that, although the equality constraints are not concerned in this paper, the sim-
ilar methodology can be used to handle the equality constraints. Furtheremore,
the KKT optimality conditions can be derived by defining different ordering
relations between closed intervals.
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