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A GENERALIZATION OF LOCAL SYMMETRIC AND

SKEW-SYMMETRIC SPLITTING ITERATION METHODS FOR

GENERALIZED SADDLE POINT PROBLEMS
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Abstract. In this paper, we further investigate the local Hermitian and
skew-Hermitian splitting (LHSS) iteration method and the modified LHSS
(MLHSS) iteration method for solving generalized nonsymmetric saddle
point problems with nonzero (2,2) blocks. When A is non-symmetric pos-
itive definite, the convergence conditions are obtained, which generalize
some results of Jiang and Cao [M.-Q. Jiang and Y. Cao, On local Hermit-
ian and Skew-Hermitian splitting iteration methods for generalized saddle
point problems, J. Comput. Appl. Math., 2009(231): 973-982] for the gen-
eralized saddle point problems to generalized nonsymmetric saddle point
problems with nonzero (2,2) blocks. Numerical experiments show the ef-
fectiveness of the iterative methods.
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1. Introduction

We consider the following 2× 2 block linear systems of the form:(
A B
BT −C

)(
x
y

)
=

(
f
g

)
, (1)

where A ∈ Rm×m is a positive definite matrix and A 6= AT , C ∈ Rn×n is
symmetric positive semi-definite, B ∈ Rm×n is a matrix of full column rank and
m ≥ n, f ∈ Rm and g ∈ Rn are two given vectors, denotes BT as the transpose of
the matrix B. It is easy to see that the coefficient matrix of system (1) is nonsin-
gular. The linear systems (1) are referred to as nonsymmetric generalized saddle
point problems, which are important and arise in a large number of scientific
and engineering applications, such as the field of computational fluid dynamics
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[22], constrained and weighted least squares [12], interior point methods in con-
strained optimization [11], mixed finite element approximations of elliptic partial
differential equations [16]. Especially, see [10] for a comprehensive survey and
references therein.

In recent years, when A is symmetric positive definite, B is of full column
rank, a large amount of work have been developed to solve the linear system
(1). As is known, there exist two kinds of methods to solve the linear systems:
direct methods and iterative methods. Direct methods are widely employed
when the size of the coefficient matrix is not too large, and are usually regarded
as robust methods. However, frequently, the matrices A and B are large and
sparse, so iterative methods, such as Uzawa type methods [6, 7, 14, 18, 19,
20, 23, 26, 28, 30], HSS iteration methods [1, 2, 3, 4, 5], preconditioned Krylov
subspace iteration methods [13, 27], become more attractive than direct methods
for solving the systems (1).

When A is non-symmetric positive definite, B is of full column rank, various
iterative methods also have been studied in [8, 9, 15, 17, 21, 24, 25]. For a
broad overview of the numerical solution of linear systems (1), one can see [10]
for more details. Recently, Jiang and Cao [24] presented local Hermitian and
skew-Hermitian splitting (LHSS) iteration method and modified LHSS (MLHSS)
iteration method for solving nonsingular systems (1) with C = 0. When A is
non-symmetric positive definite, some convergence conditions of these methods
were given under suitable preconditioners.

In this paper, we further investigate the LHSS and MLHSS iteration methods
presented in [24] for solving generalized linear systems (1) with nonzero (2,2)
blocks. When A is non-symmetric positive definite, the convergence conditions
are obtained, which generalize some results of Jiang and Cao [24] for the gener-
alized saddle point problems to generalized nonsymmetric saddle point problems
with nonzero (2,2) blocks.

The paper is organized as follows. After describing the MLHSS method for
systems (1), the convergence theorems are given in Section 2. In Section 3,
several algorithms are presented. In Section 4 and Section 5, some numerical
experiments and conclusions are given, respectively.

2. The convergence of the LHSS and MLHSS iteration methods

Denote ρ(A) as the spectral radius of a square matrix A, λmax(W ) and
λmin(W ) are the maximum and minimum eigenvalues of a symmetric positive
definite matrix W , respectively. I is the identity matrix with appropriate di-
mension. H = 1

2 (A + AT ) and S = 1
2 (A − AT ) are the symmetric and the

skew-symmetric parts of A, respectively. For the sake of simplicity, we rewrite
the generalized saddle point problem (1) as

(
A B

−BT C

)(
x
y

)
=

(
f
−g

)
, (2)
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We make the following matrix splitting

A =

(
A B

−BT C

)
= M−N ,

where

M =

(
Q1 +H 0
−BT Q2

)
, N =

(
Q1 − S −B

0 Q2 − C

)
.

Here, Q1 ∈ Rm×m and Q2 ∈ Rn×n are symmetric positive definite matrices.
Then the MLHSS iterative scheme for solving the generalized saddle point prob-
lem (2), based on the matrix splitting, is

(
Q1 + H 0

−BT Q2

)(
xk+1

yk+1

)
=

(
Q1 − S −B

0 Q2 − C

)(
xk

yk

)
+

(
f
−g

)
, (3)

or in block form,
{

xk+1 = xk + (Q1 +H)−1(f − (Axk +Byk)),
yk+1 = yk +Q−1

2 (BTxk+1 − Cyk − g).
(4)

The corresponding iteration matrix of the iteration scheme (3) or (4) is given

T =

(
Q1 +H 0
−BT Q2

)−1 (
Q1 − S −B

0 Q2 − C

)
, (5)

or equivalently,

T = I −M−1A. (6)

When Q1 = 0, the MLHSS method becomes the LHSS method. We know
that the iteration scheme (4) converges if and only if ρ(T ) < 1. To prove the
convergence of the iteration scheme (4), we need the following lemma.

Lemma 1 ([29]). Consider the quadratic equation λ2 + φλ + ψ = 0. where φ
and ψ are real numbers. Both roots of the equation are less than one in modulus
if and only if |ψ| < 1 and |φ| < 1 + ψ.

The following theorem gives a sufficient and necessary condition for guaran-
teeing the convergence of the MLHSS method (4).

Theorem 1. Assume that A is a non-symmetric matrix with the positive-definite
symmetric part H = 1

2 (A + AT ) and the skew-symmetric part S = 1
2 (A − AT ).

Let Q1 ∈ Rm×m and Q2 ∈ Rn×n be symmetric positive definite, and B ∈ Rm×n

be of full column rank, with m ≥ n. Then:
(a) when C = 0, the MLHSS method is convergent if and only if

0 ≤ c < 2a+ 4b,

(b) when C = δQ2 (δ 6= 0), the MLHSS method is convergent if and only if

0 < δ < 2 and 0 ≤ c < (2− δ)(a+ 2b).
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Here,

a = uTHu, b = uTQ1u, c = uTBQ−1
2 BTu,

and [uT , vT ]T is an eigenvector of iteration matrix T with u ∈ Cm and v ∈ Cn

such that uTu = 1.

Proof. Let λ be the eigenvalue of T and [uT , vT ]T be the corresponding eigen-
vector. Then from equation (5), we have

N
(

u
v

)
= λM

(
u
v

)
,

or equivalently,
{

(1− λ)(Q1 +H)u−Au = Bv,
λBTu = (λ− 1)Q2v + Cv.

(7)

We can prove that λ 6= 1 and u 6= 0. If λ = 1, then the two equalities in (7)
reduce to {

Au+Bv = 0,
BTu− Cv = 0.

(8)

The nonsingular property of the matrix A implies [uT , vT ]T = 0, which contra-
dicts the assumption that [uT , vT ]T is an eigenvector. Besides, if u = 0, then,
we have Bv = 0. Since B is a full column rank matrix, Bv = 0 implies v = 0,
which also contradicts the assumption that [uT , vT ]T is an eigenvector. Hence,
u 6= 0. Without loos of generality, we assume that uTu = 1.

For case (a), when C = 0, the MLHSS method (4) is the same as that in [24],
we know that the result is true from Theorem 2.2 in [24].

Now, we prove the case (b). As C = δQ2 and δ 6= 0, equation (7) reduces to
{

(1− λ)(Q1 +H)u−Au = Bv,
λBTu = (λ+ δ − 1)Q2v.

(9)

If λ = 1− δ, then the above equation (9) leads to
{

δ(Q1 +H)u−Au = Bv,
BTu = 0,

or equivalently,
{

u ∈ null(BT ),
v = (BT (Q1 +H)−1B)−1(δBT −BT (Q1 +H)−1A)u.

Here, null (·) is used to represent the null space of the corresponding matrix.
If λ 6= 1− δ, from the second equality in (9), we have

v =
λ

λ+ δ − 1
Q−1

2 BTu.
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By substituting v into the first equality of equation (9), we get

(Q1 − S)u− λ

λ+ δ − 1
BQ−1

2 BTu = λ(Q1 +H)u. (10)

Note that S is a skew-symmetric matrix, then uTSu = 0 for all u ∈ Cm. Multi-
plying both sides of this equality from left with uT , after rearranging we imme-
diately obtain

λ2 + λ

(
δ − 1 +

c− b

a+ b

)
+

(1− δ)b

a+ b
= 0.

From Lemma 1, it then follows that |λ| < 1 if and only if



|1− δ| < 1,

| (1−δ)b
a+b | < 1,

|δ − 1 + c−b
a+b | < 1 + (1−δ)b

a+b .

(11)

By straightforwardly solving (11), we immediately get that the MLHSS method
is convergent if and only if

0 < δ < 2 and 0 ≤ c < (2− δ)(a+ 2b).

Up to now, the proof has been completed. ¤

When Q1 = 0, the MLHSS iteration method becomes the LHSS iteration
method. Hence, by Theorem 1, the following theorem gives a description on the
convergence of the LHSS method.

Theorem 2. Assume that A is a non-symmetric matrix with the positive-definite
symmetric part H = 1

2 (A + AT ) and the skew-symmetric part S = 1
2 (A − AT ).

Let Q2 ∈ Rn×n be symmetric positive definite, and B ∈ Rm×n be of full column
rank, with m ≥ n. Then:
(a) when C = 0, the LHSS method is convergent if and only if

0 ≤ c < 2a,

(b) when C = δQ2 (δ 6= 0), the LHSS method is convergent if and only if

0 < δ < 2 and 0 ≤ c < (2− δ)a.

Here,
a = uTHu, c = uTBQ−1

2 BTu,

and [uT , vT ]T is an eigenvector of iteration matrix T with u ∈ Cm and v ∈ Cn

such that uTu = 1.

Based upon the proof of Theorem 1, we can easily derive the following con-
vergence condition of the MLHSS method, which can be used in practical appli-
cations.

Theorem 3. Assume that A is a non-symmetric matrix with the positive-definite
symmetric part H = 1

2 (A + AT ) and the skew-symmetric part S = 1
2 (A − AT ).



1172 Jian-Lei Li, Dang Luo and Zhi-Jiang Zhang

Let Q1 ∈ Rm×m and Q2 ∈ Rn×n be symmetric positive definite, and B ∈ Rm×n

be of full column rank, with m ≥ n. Then:
(a) when C = 0, the MLHSS method is convergent if 2H +4Q1 −BQ−1

2 BT is a
positive definite matrix.
(b) when C = δQ2 (0 < δ < 2), the MLHSS method is convergent if (2−δ)(2H+
4Q1)−BQ−1

2 BT is a positive definite matrix.

Proof. When C = 0, the MLHSS method is convergent if

uT (2H + 4Q1 −BQ−1
2 BT )u > 0

or in other words 2H + 4Q1 −BQ−1
2 BT is positive definite.

when C = δQ2 (0 < δ < 2), the MLHSS method is convergent if

uT ((2− δ)(2H + 4Q1)−BQ−1
2 BT )u > 0

or in other words (2− δ)(2H + 4Q1)−BQ−1
2 BT is positive definite. ¤

Corollary 1. Under the assumption conditions of Theorem 2, Then:
(a) when C = 0, the MLHSS method is convergent if 2H−BQ−1

2 BT is a positive
definite matrix.
(b) when C = δQ2 (0 < δ < 2), the MLHSS method is convergent if 2(2− δ)H −
BQ−1

2 BT is a positive definite matrix.

Corollary 2. Under the assumption conditions of Theorem 3, Then:
(a) when C = 0, the MLHSS method is convergent if

2λmax(H) + 4λmax(Q1) > λmin(BQ−1
2 BT ).

(b) when C = δQ2 (0 < δ < 2), the MLHSS method is convergent if

(2− δ)(2λmax(H) + 4λmax(Q1)) > λmin(BQ−1
2 BT ).

3. Several algorithms

In Section 2, the convergence of the LHSS method and MLHSS method are
given for nonsymmetric generalized saddle point problems with nonzero (2,2)
blocks. Now, we give other formal MLHSS methods. Since the LHSS method is
the special case of the MLHSS method, we only give MLHSS method.

Case 1. Motivated by the generalized inexact parameterized Uzawa method
presented in [19], which is mainly about the Hermitian saddle point problems, for
the nonsymmetric generalized saddle point problems with nonzero (2,2) blocks,
the generalized MLHSS method can be taken as follows, denoted as Algorithm
1: {

xk+1 = xk + (Q1 +H)−1(f − (Axk +Byk)),
yk+1 = yk +Q−1

2 ((1− t)BTxk+1 + tBTxk − Cyk − g).
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Case 2. By adding a correction iteration step (see [25]) for the Algorithm 1,
we can have the following algorithm, denoted as Algorithm 2:





xk+1 = xk + (Q1 +H)−1(f − (Axk +Byk)),
yk+1 = yk +Q−1

2 ((1− t)BTxk+1 + tBTxk − Cyk − g),
xk+1 = xk+1 − (Q1 +H)−1B(yk+1 − yk).

Case 3. For the Algorithm 2, if we use different relaxed factors for x and y,
we can have the following algorithm, denoted as Algorithm 3:





xk+1 = xk + ω(Q1 +H)−1(f − (Axk +Byk)),
yk+1 = yk + τQ−1

2 ((1− t)BTxk+1 + tBTxk − Cyk − g),
xk+1 = xk+1 − (Q1 +H)−1B(yk+1 − yk).

4. Numerical experiments

In this section, we illustrate the feasibility and effectiveness of those iteration
algorithms by using numerical examples. We only list the number of iterations
(denoted by IT), CPU time is canceled because it’s small. “RES” are defined as

RES :=

√
‖f −Axk −Byk‖2 + ‖BTxk − Cyk − g‖2√

f2 + g2
.

In our computations, all runs of Algorithms are started from the initial vector
(xT

0 , y
T
0 )

T = 0 and terminated if the current iteration satisfies either RES <
10−5 or the number of the prescribed iteration kmax = 1000 are exceeded.

Consider the linear system (2), in which

A =

(
I ⊗ T 0
0 I ⊗ T + T ⊗ I

)
∈ R2p2×2p2

,

B =

(
I ⊗ F
F ⊗ I

)
∈ R2p2×p2

, C = I ∈ Rp2×p2

and

T =
1

h2
· tridiag(−1, 2,−1) ∈ Rp×p, F =

1

h
· tridiag(−1, 1, 0) ∈ Rp×p,

with ⊗ being the Kronecker product symbol, h = 1
p+1 the discretization mesh-

size. We set m = 2p2 and n = p2, hence, the total number of variables is
m + n = 3p2. In our computations, we choose the right-hand-side vector
(fT , gT )T ∈ Rm+n such that the exact solution of the linear system (2) is
(xT , yT )T = (1, 1, ..., 1)T ∈ Rm+n. All the experiment are performed in MAT-
LAB and Q2 = C. We list the computed results in Tables with different choices
of Q1, ω, τ and t. From these tables, we can see that the Algorithm 3 is best if
the parameters are chosen appropriately.



1174 Jian-Lei Li, Dang Luo and Zhi-Jiang Zhang

Table 1. Iterations numbers for algorithm 1

t Q1 = H Q1 = I Q1 = 0
p = 8 p = 16 p = 24 p = 8 p = 16 p = 24 p = 8 p = 16 p = 24

-2.5 137 110 99 127 104 94 121 100 90
-1.5 147 116 103 135 109 98 128 105 94
-1 154 121 107 141 113 101 134 108 97
-0.8 157 123 109 144 115 102 136 110 98
-0.6 161 125 111 148 117 104 139 112 100
-0.5 164 127 112 150 118 105 141 113 101
-0.4 166 128 113 152 120 106 143 114 102
-0.2 172 132 116 157 123 109 148 117 104
0 180 137 119 164 127 112 153 121 107
0.1 186 139 121 168 129 114 157 123 109
0.3 199 147 127 179 135 118 166 128 113
0.5 222 158 135 196 145 125 181 137 119
0.7 282 179 149 235 162 138 211 152 130
0.8 379 204 164 342 181 150 257 167 141
0.9 368 277 216 334 257 182 312 225 167
1 358 272 237 326 253 222 306 240 213
1.2 343 207 165 313 182 150 294 169 141
1.5 226 158 135 199 145 125 183 137 119
1.8 193 143 124 174 132 116 162 126 111
2.2 174 132 116 158 123 109 148 117 104
2.5 165 127 112 150 118 105 142 113 101

5. Conclusion

In this paper, we further investigate the LHSS and MLHSS iteration methods
presented in [24] for solving generalized nonsymmetric saddle point problems
with nonzero (2,2) blocks. When A is non-symmetric positive definite, the con-
vergence conditions are obtained, which generalize some results of Jiang and Cao
[24] for the generalized saddle point systems to the generalized nonsymmetric
saddle point problems with nonzero (2,2) blocks.
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