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Abstract. In this paper, we introduce a new iterative scheme for finding
a common element of the set of fixed points of a finite family of strict
pseudocontractions and the solution set of pseudomonotone and Lipschitz-
type continuous equilibrium problems. The scheme is based on the idea of
extragradient methods and fixed point iteration methods. We show that
the iterative sequences generated by this algorithm converge strongly to
the common element in a real Hilbert space.
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1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respec-
tively. Let C be a nonempty closed convex subset of H and f be a bifunction
from C ×C to R such that f(x, x) = 0 for all x ∈ C. We consider the following
equilibrium problems

(
shortly EP (f, C)

)
:

Find x∗ ∈ C such that f(x∗, y) ≥ 0 ∀y ∈ C.

The set of solutions of problem EP (f, C) is denoted by Sol(f, C).
If f(x, y) := 〈F (x), y − x〉 for all x, y ∈ C, where F is a mapping from C to

H, then problem EP (f, C) becomes the following variational inequalities:

Find x∗ ∈ C such that 〈F (x∗), y − x∗〉 ≥ 0 ∀y ∈ C.

It is well-known that problem EP (f, C) covers many important problems in
optimization and nonlinear analysis as well as has found many applications in
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economic, transportation and engineering (see [7, 10] and the references quoted
therein). Theory and methods for solving this problem have been well developed
by many researchers [3, 4, 12, 15].

Let C be a nonempty closed convex subset of a real Hilbert space H. A
mapping S : C → C is said to be a strict pseudocontraction if there exists a
constant 0 ≤ L < 1 such that

‖S(x)− S(y)‖2 ≤ ‖x− y‖2 + L‖(I − S)(x)− (I − S)(y)‖2 ∀x, y ∈ C,

where I is the identity mapping on H. If L = 0 then S is called nonexpansive
on C.

The problem of finding a common fixed point element of a finite family of
strict contractions {Si}pi=1 (p ≥ 1) is described as follows:

Find x∗ ∈ C such that x∗ ∈ ∩p
i=1Fix(Si), (Fix)

where Fix(Si) is the set of the fixed points of the mapping Si (i = 1, · · · , p).
This problem now becomes a mature subject in nonlinear analysis. The theory
and solution methods of this problem can be found in many research papers and
monographs (see [11]).

We are interested in the problem of find a common element of the solution set
of the equilibrium problem EP (f, C) and the solution set of the fixed problem
(Fix), namely:

Find x∗ ∈ ∩p
i=1Fix(Si) ∩ Sol(f, C). (1)

An important special case of problem (1) is that f(x, y) = 〈F (x), y−x〉 and this
problem is reduced to finding a common element of the solution set of variational
inequalities and the solution set of a fixed point problem (see [5, 6, 14, 18, 19, 23]).

In this paper, we propose a new iterative scheme for solving problem (1).
This method can be considered as an improvement of the viscosity approxi-
mation method in [18], the iterative method in [9] via an improvement set of
extragradient methods [3, 4] and extended the algorithm in [2]. The algorithm is
then modified by projecting on a suitable set to obtain the strongly convergence.
The main iterations of the algorithm, we only solve strongly convex problems.

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H. A
bifunction f : C × C → R is said to be

a) monotone on C if

f(x, y) + f(y, x) ≤ 0 ∀x, y ∈ C;

b) pseudomonotone on C if

f(x, y) ≥ 0 ⇒ f(y, x) ≤ 0 ∀x, y ∈ C;

c) Lipschitz-type continuous on C with two constants c1 > 0 and c2 > 0 if

f(x, y) + f(y, z) ≥ f(x, z)− c1‖x− y‖2 − c2‖y − z‖2 ∀x, y, z ∈ C. (2)
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It is clear that every monotone bifunction f is pseudomonotone. However, if f
is pseudomonotone, f might not be monotone. It is not difficult to check such
examples (see [16]).

The following proposition lists some useful properties for strict pseudocon-
tractions.

Proposition 2.1 ([1]). Let C be a nonempty closed convex subset of a real
Hilbert space H, S : C → C be an L-strict pseudocontraction and for each
i = 1, · · · , p, Si : C → C is a Li-strict pseudocontraction for some 0 ≤ Li < 1.
Then:

(a) S satisfies the following Lipschitz condition:

‖S(x)− S(y)‖ ≤ 1 + L

1− L
‖x− y‖ ∀x, y ∈ C;

(b) I − S is demiclosed at 0. That is, if the sequence {xk} contains in C
such that xk ⇀ x̄ and (I − S)(xk) → 0 then (I − S)(x̄) = 0;

(c) the set of fixed points Fix(S) is closed and convex;

(d) if λi > 0 (i = 1, · · · , p) and
p∑

i=1

λi = 1 then
p∑

i=1

λiSi is a L̄-strict pseu-

docontraction with L̄ := max {Li | 1 ≤ i ≤ L};
(e) if λi is chosen as in (d) and {Si | i = 1, · · · , p} has a common fixed point

then

Fix
( p∑

i=1

λiSi

)
= ∩p

i=1Fix(Si).

Before presenting our main contribution, let us briefly look at the recently
literature related to the methods for solving problem (1). In [18] Takahashi and
Takahashi proposed an viscosity approximation method for finding a common
element of set of solutions of problem EP (f, C) and the set of fixed points of a
nonexpansive mapping S in a real Hilbert space H. This method generated an
iteration sequence {xk} starting from a given intial point x0 ∈ H and computed
xk+1 as

{
Find uk ∈ C such that f(uk, y) + 1

rk
〈y − uk, uk − xk〉 ≥ 0, for all y ∈ C,

Compute xk+1 = αkg(x
k) + (1− αk)S(u

k),
(3)

where g is a contraction of H into itself, the sequences of parameters {rk}
and {αk} were chosen appropriately. The authors showed that two iterative
sequences {xk} and {uk} converged strongly to z = PrFix(S)∩Sol(f,C)

(
g(z)

)
,

where PrC denotes the projection onto C.
The problem of finding a common fixed point of a finite sequence of mappings

has been studied by many researchers. For instance, Marino and Xu in [13]
proposed an iterative algorithm for finding a common fixed point of p strict
pseudocontractions Si (i = 1, · · · , p). The method computed a sequence {xk}



1182 P.N. Anh and D.X. Son

starting from x0 ∈ H and taking

xk+1 = αkx
k + (1− αk)

p∑

i=1

λk,iSi(x
k), (4)

where the sequence of parameters {αk} and {λk,i} was chosen in a specific way
to ensure the convergence of the iterative sequence {xk}. The authors showed
that the sequence {xk} converged weakly to the same point x̄ ∈ ∩p

i=1Fix(Si).
Recently, Chen et al. in [9] proposed a new iterative scheme for finding a

common element of the set of common fixed points of a strict pseudocontraction
sequence {S̄i} and the set of solutions of problem EP (f, C) in a real Hilbert
space H. This method is briefly described as follows. Given a starting point
x0 ∈ H and generates three iterative sequences {xk}, {yk} and {zk} using the
following scheme:





Compute yk = αkx
k + (1− αk)S̄k(x

k),

Find zk ∈ C such that f(zk, y) + 1
rk

〈y − zk, zk − yk〉 ≥ 0 ∀y ∈ C,

Compute xk+1 = PrCk (x
0), where Ck := {v ∈ C | ‖zk − v‖ ≤ ‖xk − v‖}.

(5)

Here, two sequences {αk} and {rk} are given as control parameters. Under
certain conditions imposed on {αk} and {rk}, the authors showed that the se-
quences {xk}, {yk} and {zk} converged strongly to the same point x∗ such that
x∗ ∈ PrSol(f,C)∩Fix(S)(x

0), where S is a nonexpansive mapping of C into itself

defined by S(x) = lim
j→∞

S̄j(x) for all x ∈ C.

The solution methods for finding a common element of the set of solutions of
problem EP (f, C) and ∩p

i=1Fix(Si) in a real Hilbert space have been recently
studied in many research papers (see [8, 15, 20, 21, 22, 23] and many other
references cited therein). At each iteration n of all current algorithms, it requires
to solve approximation equilibrium problems for a monotone and Lipschitz-type
continuous bifunction on C.

Recall the following assumptions that will be used to prove the convergence
of the algorithms.

Assumption 2.2. The bifunction f satisfies the following conditions:

(i) f is pseudomonotone and weakly continuous on C;
(ii) f is Lipschitz-type continuous on C;
(iii) for each x ∈ C, f(x, ·) is convex and subdifferentiable on C.

Assumption 2.3. For each i = 1, · · · , p, Si is Li-strict pseudocontraction for
some 0 ≤ Li < 1.

Assumption 2.4. The solution set of (1) is nonempty, i.e.,

∩p
i=1Fix(Si) ∩ Sol(f, C) 6= ∅.

The algorithm is now described as follows.
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Algorithm 2.5.
Initialization: Choose positive sequences {λk}, {λk,i} and {αk} satisfy the con-
ditions:




{λk} ⊂ [a, b] for some a, b ∈ (0, 1
L ), where L := max{2c1, 2c2},

{αk} ⊂ [α, β] for some α, β ∈ (L̄, 1), where L̄ := max{Li | 1 ≤ i ≤ p},
p∑

i=1

λk,i = 1 for all k ≥ 1.

(6)
Find an initial point x0 ∈ C and Set k := 0.
Iteration k: Perform the steps below:

• Step 1. Solve two strongly convex programs:
{
yk := argmin

{
λkf(x

k, y) + 1
2‖y − xk‖2 | y ∈ C

}
,

tk := argmin
{
λkf(y

k, y) + 1
2‖y − xk‖2 | y ∈ C

}
.

• Step 2. Set zk := αkt
k + (1− αk)

p∑
i=1

λk,iSi(t
k).

• Step 3. Set
{
Pk := {z ∈ C | ‖zk − z‖ ≤ ‖xk − z‖},
Qk := {z ∈ C | 〈xk − z, x0 − xk〉 ≥ 0}.

Compute xk+1 := PrPk∩Qk
(x0). Increase k by 1 and go to Step 1.

3. Convergence of the algorithms

This section investigates the convergence of Algorithm 2.5. For this purpose,
let us recall the following technical lemma which will be used in the sequel.

Lemma 3.1 ([10]). Let C be a nonempty closed convex subset of a real Hilbert
space H and g : C → R be subdifferentiable on C. Then x∗ is a solution to the
following convex problem

min{g(x) | x ∈ C}
if and only if 0 ∈ ∂g(x∗) +NC(x

∗), where ∂g(·) denotes the subdifferential of g
and NC(x

∗) is the (outward) normal cone of C at x∗ ∈ C.

Lemma 3.2 ([11]). Let C be a nonempty closed convex subset of a real Hilbert
space H and x0 ∈ H. Let the sequence {xk} be bounded such that every weakly
cluster point x̄ of {xk} belongs to C and

‖xk − x0‖ ≤ ‖x0 − PrC(x
0)‖ ∀k ≥ 0.

Then {xk} converges strongly to PrC(x
0) as k → ∞.

Now, we prove the main convergence theorem.
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Theorem 3.3. Suppose that Assumptions 2.2-2.4 are satisfied. Then the se-
quences {xk}, {yk} and {zk} generated by Algorithm 2.5 converge strongly to the
same point x∗ ∈ ∩p

i=1Fix(Si) ∩ Sol(f, C), where

x∗ = Pr∩p
i=1Fix(Si)∩Sol(f,C)(x

0).

The proof of this theorem is divided into several steps.

Step 1. Suppose that x∗ ∈ ∩p
i=1Fix(Si) ∩ Sol(f, C). We show that

‖tk−x∗‖2 ≤ ‖xk−x∗‖2−(1−2λkc2)‖tk−yk‖2−(1−2λkc1)‖xk−yk‖2 ∀k ≥ 0. (7)

Proof of Step 1. Since f(x, ·) is convex on C for each x ∈ C, applying Lemma
3.1, we see that tk = argmin{1

2‖t− xk‖2 + λkf(y
k, t) | t ∈ C} if and only if

0 ∈ ∂2
(
λkf(y

k, y) +
1

2
‖y − xk‖2)(tk) +NC(t

k), (8)

where NC(x) is the (outward) normal cone of C at x ∈ C. Thus, since f(yk, ·)
is subdifferentiable on C, by the well-known Moreau-Rockafellar theorem (see
[17]), there exists w ∈ ∂2f(y

k, tk) such that

f(yk, t)− f(yk, tk) ≥ 〈w, t− tk〉 ∀t ∈ C.

Substituting t = x∗ into this inequality to obtain

f(yk, x∗)− f(yk, tk) ≥ 〈w, x∗ − tk〉. (9)

On the other hand, it follows from (8) that 0 = λkw + tk − xk + w̄, where
w ∈ ∂2f(y

k, tk) and w̄ ∈ NC(t
k). By the definition of the normal cone NC we

have, from this relation that

〈tk − xk, t− tk〉 ≥ λk〈w, tk − t〉 ∀t ∈ C. (10)

Substituting t = x∗ ∈ C into the last inequality, we obtain

〈tk − xk, x∗ − tk〉 ≥ λk〈w, tk − x∗〉. (11)

Now, we combine (9) and (11) to obtain

〈tk − xk, x∗ − tk〉 ≥ λk

(
f(yk, tk)− f(yk, x∗)

)
. (12)

Furthermore, since x∗ ∈ Sol(f, C), f(x∗, y) ≥ 0 for all y ∈ C, and f is pseu-
domonotone on C, we have f(yk, x∗) ≤ 0. Hence, (12) implies that

〈tk − xk, x∗ − tk〉 ≥ λkf(y
k, tk). (13)

Applying the Lipschitz condition (2) of f with x = xk, y = yk and z = tk, it
follows from (13) that

f(yk, tk) ≥ f(xk, tk)− f(xk, yk)− c1‖yk − xk‖2 − c2‖tk − yk‖2. (14)

Combining (13) and (14), we get

〈tk−xk, x∗− tk〉 ≥ λk

(
f(xk, tk)−f(xk, yk)−c1‖yk−xk‖2−c2‖tk−yk‖2). (15)



A New Method for a Finite Family of Pseudocontractions and Equilibrium Problems 1185

Similarly, since yk is the unique solution to the strongly convex program:
min{1

2‖y − xk‖2 + λkf(x
k, y)| y ∈ C}, we have

λk

(
f(xk, y)− f(xk, yk)

) ≥ 〈yk − xk, yk − y〉 ∀y ∈ C.

Substituting y = tk ∈ C into the last inequality, we obtain

λk

(
f(xk, tk)− f(xk, yk)

) ≥ 〈yk − xk, yk − tk〉. (16)

From (15), (16) and the relation 2〈tk − xk, x∗ − tk〉 = ‖xk − x∗‖2 −‖tk − xk‖2 −
‖tk − x∗‖2, it follows that
‖xk − x∗‖2 − ‖tk − xk‖2 − ‖tk − x∗‖2 ≥2〈yk − xk, yk − tk〉 − 2λkc1‖xk − yk‖2

− 2λkc2‖tk − yk‖2.
Hence,

‖tk − x∗‖2 ≤‖xk − x∗‖2 − ‖tk − xk‖2 − 2〈yk − xk, yk − tk〉+ 2λkc1‖xk − yk‖2

+ 2λkc2‖tk − yk‖2

=‖xk − x∗‖2 − ‖(tk − yk) + (yk − xk)‖2 − 2〈yk − xk, yk − tk〉+ 2λkc1‖xk − yk‖2

+ 2λkc2‖tk − yk‖2

≤‖xk − x∗‖2 − ‖tk − yk‖2 − ‖xk − yk‖2 + 2λkc1‖xk − yk‖2 + 2λkc2‖tk − yk‖2

=‖xk − x∗‖2 − (1− 2λkc1)‖xk − yk‖2 − (1− 2λkc2)‖yk − tk‖2.
The last inequality is indeed (7).

Step 2. Claim that ∩p
i=1Fix(Si) ∩ Sol(f, C) ⊆ Pk ∩Qk for all k ≥ 0.

Proof of Step 2. Set

S̄k :=

p∑

i=1

λk,iSi.

For each x∗ ∈ ∩p
i=1Fix(Si)∩Sol(f, C), using Proposition 2.1(d) and the relation

‖λx+(1−λ)y‖2 = λ‖x‖2+(1−λ)‖y‖2−λ(1−λ)‖x−y‖2 ∀λ ∈ [0, 1] ∀x, y ∈ H,

we have zk = αkt
k + (1− αk)S̄k(t

k) and

‖zk − x∗‖2 =‖αkt
k + (1− αk)S̄k(t

k)− x∗‖2

=‖αk(t
k − x∗) + (1− αk){S̄k(t

k)− x∗}‖2

=αk‖tk − x∗‖2 + (1− αk)‖S̄k(t
k)− x∗‖2 − αk(1− αk)‖S̄k(t

k)− tk‖2

=αk‖tk − x∗‖2 + (1− αk)‖S̄k(t
k)− S̄k(x

∗)‖2 − αk(1− αk)‖S̄k(t
k)− tk‖2

≤αk‖tk − x∗‖2 + (1− αk){‖tk − x∗‖2 + L̄‖(I − S̄k)(t
k)− (I − S̄k)(x

∗)‖2}
− αk(1− αk)‖S̄k(t

k)− tk‖2

=‖tk − x∗‖2 − (1− αk)(αk − L̄)‖S̄k(t
k)− tk‖2.

Then from αk ≥ α > L̄, it follows that

‖zk − x∗‖ ≤ ‖tk − x∗‖. (17)
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Using this and Step 1, we have ‖zk − x∗‖ ≤ ‖xk − x∗‖ for all k ≥ 0. By the
definition of Pk, we get

∩p
i=1Fix(Si) ∩ Sol(f, C) ⊆ Pk ∀k ≥ 0. (18)

Next, we show by mathematical induction that

∩p
i=1Fix(Si) ∩ Sol(f, C) ⊆ Qk ∀k ≥ 0.

For k = 0 we have Q0 = C, hence we have ∩p
i=1Fix(Si) ∩ Sol(f, C) ⊆ Q0.

Now we suppose that ∩p
i=1Fix(Si) ∩ Sol(f, C) ⊆ Qk for some k ≥ 0. From

xk+1 = PrPk∩Qk
(x0), it follows that

〈xk+1 − x, x0 − xk+1〉 ≥ 0 ∀x ∈ Pk ∩Qk.

Using this and ∩p
i=1Fix(Si) ∩ Sol(f, C) ⊆ Qk, we have

〈xk+1 − x, x0 − xk+1〉 ≥ 0 ∀x ∈ ∩p
i=1Fix(Si) ∩ Sol(f, C),

and hence ∩p
i=1Fix(Si)∩Sol(f, C) ⊆ Qk+1. By the mathematical induction, we

have

∩p
i=1Fix(Si) ∩ Sol(f, C) ⊆ Qk ∀k ≥ 0.

This and (18) prove Step 2.

Step 3. Claim that

lim
k→∞

‖xk+1 − xk‖ = lim
k→∞

‖xk − zk‖
= lim

k→∞
‖xk − yk‖

= lim
k→∞

‖xk − tk‖
= lim

k→∞
‖S̄k(t

k)− tk‖
= 0.

Proof of Step 3. It follows from Step 2 and xk+1 = PrPk∩Qk
(x0) that

‖xk+1 − x0‖ ≤ ‖Pr∩p
i=1Fix(Si)∩Sol(f,C)(x

0)− x0‖ ∀k ≥ 0. (19)

Hence, the sequence {xk} is bounded. By Step 1, also the sequences {tk} and
{zk}. Otherwise, we have

〈xk − x, x0 − xk〉 ≥ 0 ∀x ∈ Qk,

and hence xk = PrQk
(x0). Using this and xk+1 ∈ Pk ∩Qk ⊆ Qk, we have

‖xk − x0‖ ≤ ‖xk+1 − x0‖ ∀k ≥ 0.

Therefore, there exists

A = lim
k→∞

‖xk − x0‖. (20)

Using xk = PrQk
(x0), xk+1 ∈ Qk and the property of PrQk

(·)
‖PrQk

(x)− x‖2 ≤ ‖x− y‖2 − ‖PrQk
(x)− y‖2 ∀x ∈ H, y ∈ Qk,
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we have
‖xk+1 − xk‖2 ≤ ‖xk+1 − x0‖2 − ‖xk − x0‖2 ∀k ≥ 0.

Combinating this and (20), we get

lim
k→∞

‖xk+1 − xk‖ = 0. (21)

It follows from xk+1 = PrPk∩Qk
(x0) that xk+1 ∈ Pk, i.e.,

‖zk − xk+1‖ ≤ ‖xk − xk+1‖.
Hence

‖xk − zk‖ ≤ ‖xk − xk+1‖+ ‖xk+1 − zk‖ ≤ 2‖xk − xk+1‖ ∀k ≥ 0.

Then, by (21), we have

lim
k→∞

‖xk − zk‖ = 0. (22)

Using Step 1, (17) and {λk} ⊂ [a, b] for some a, b ∈ (0, 1
L ), for each x∗ ∈

∩p
i=1Fix(Si) ∩ Sol(f, C) we have

‖zk − x∗‖2 ≤ ‖tk − x∗‖2
≤ ‖xk − x∗‖2 − (1− 2λkc2)‖tk − yk‖2 − (1− 2λkc1)‖xk − yk‖2
≤ ‖xk − x∗‖2 − (1− 2λkc1)‖xk − yk‖2
≤ ‖xk − x∗‖2 − (1− bL)‖xk − yk‖2.

Therefore, we have

‖xk − yk‖2 ≤ 1

1− bL
(‖xk − x∗‖2 − ‖zk − x∗‖2)

=
1

1− bL
(‖xk − x∗‖ − ‖zk − x∗‖)(‖xk − x∗‖+ ‖zk − x∗‖)

≤ 1

1− bL
‖xk − zk‖(‖xk − x∗‖+ ‖zk − x∗‖).

Since this, (22) and the sequences {xk}, {zk} are bounded, we obtain

lim
k→∞

‖xk − yk‖ = 0. (23)

By the similar way, we also have

lim
k→∞

‖tk − yk‖ = 0. (24)

Combining (23), (24) and ‖xk − tk‖ ≤ ‖xk − yk‖+ ‖yk − tk‖, we have

lim
k→∞

‖xk − tk‖ = 0. (25)

Using (22), (25) and zk = αkt
k + (1− αk)S̄k(t

k), we have

(1− β)‖S̄k(t
k)− tk‖ ≤(1− αk)‖S̄k(t

k)− tk‖
=‖zk − tk‖
≤‖zk − xk‖+ ‖tk − xk‖,
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and hence lim
k→∞

‖tk − S̄k(t
k)‖ = 0. Then the results (21)-(25) prove Step 3.

In Step 4 and Step 5 of this theorem, we will consider weakly clusters of {xk}.
It follows from (19) that the sequence {xk} is bounded and hence there exists a
subsequence {xkj} converges weakly to x̄ as j → ∞. By Step 3, the sequences
{ykj}, {tkj} and {zkj} converge weakly to x̄.

Step 4. Claim that x̄ ∈ ∩p
i=1Fix(Si).

Proof of Step 4. For each i = 1, · · · , p, we suppose that λkj ,i converges λ̄i as

j → ∞ such that
p∑

i=1

λ̄i = 1. Then we have

Skj
(x) → S(x) :=

p∑

i=1

λ̄iSi(x) (as j → ∞) ∀x ∈ C.

Since
p∑

i=1

λ̄i = 1, from Step 3 and

‖tkj − S(tkj )‖ ≤ ‖tkj − S̄kj (t
kj )‖+ ‖S̄kj (t

kj )− S(tkj )‖

= ‖tkj − S̄kj (t
kj )‖+ ‖

p∑

i=1

λkj ,iSi(t
kj )−

p∑

i=1

λ̄iSi(t
kj )‖

= ‖tkj − S̄kj (t
kj )‖+ ‖

p∑

i=1

(λkj ,i − λ̄i)Si(t
kj )‖

≤ ‖tkj − S̄kj (t
kj )‖+

p∑

i=1

|λkj ,i − λ̄i|‖Si(t
kj )‖,

we obtain that lim
k→∞

‖tkj − S(tkj )‖ = 0. By Proposition 2.1(b), we have x̄ ∈

Fix(S) = Fix(
p∑

i=1

λ̄iSi). Then, it implies from Proposition 2.1(e) that x̄ ∈
∩p
i=1Fix(Si).

Step 5. When xkj ⇀ x̄ as j → ∞, we show that x̄ ∈ Sol(f, C).

Proof of Step 5. Since yk is the unique strongly convex problem

min{1
2
‖x− xk‖2 + f(xk, y) | y ∈ C}

and Lemma 3.1, we have

0 ∈ ∂2
(
λkf(x

k, y) +
1

2
‖y − xk‖2)(yk) +NC(y

k).

This follows that

0 = λkw + yk − xk + w̄,
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where w ∈ ∂2f(x
k, yk) and w̄ ∈ NC(y

k). By the definition of the normal cone
NC we imply that

〈yk − xk, y − yk〉 ≥ λk〈w, yk − y〉 ∀y ∈ C. (26)

On the other hand, since f(xk, ·) is subdifferentiable on C, by the well known
Moreau-Rockafellar theorem, there exists w ∈ ∂2f(x

k, yk) such that

f(xk, y)− f(xk, yk) ≥ 〈w, y − yk〉 ∀y ∈ C.

Combining this with (26), we have

λk

(
f(xk, y)− f(xk, yk)

) ≥ 〈yk − xk, yk − y〉 ∀y ∈ C.

Hence

λkj

(
f(xkj , y)− f(xkj , ykj )

) ≥ 〈ykj − xkj , ykj − y〉 ∀y ∈ C.

Then, using {λk} ⊂ [a, b] ⊂ (0, 1
L ), Step 2, xkj ⇀ x̄, ykj ⇀ x̄ as j → ∞ and

weakly continuity of f , we have

f(x̄, y) ≥ 0 ∀y ∈ C.

This means that x̄ ∈ Sol(f, C).

Step 6. Claim that the sequences {xk}, {yk}, {zk} and {tk} converge strongly
to the same point x∗, where

x∗ = Pr∩p
i=1Fix(Si)∩Sol(f,C)(x

0).

Proof of Step 6. It follows from Step 4 and Step 5 that for every weakly cluster
point x̄ of the sequence {xk} satisfies x̄ ∈ ∩p

i=1Fix(Si, C) ∩ Sol(f, C). On the
other hand, using the definition of Qk, we have

xk = PrQk
(x0).

Combining this with Step 2, we obtain

‖x0 − xk‖ ≤ ‖x0 − x‖ ∀x ∈ ∩p
i=1Fix(Si, C) ∩ Sol(f, C).

With x = x∗, we have

‖x0 − xk‖ ≤ ‖x0 − x∗‖.
By Lemma 3.2, we claim that the sequence {xk} converges strongly to x∗ as
k → ∞, where x∗ = Pr∩p

i=1Fix(Si,C)∩Sol(f,C)(x
0). By Step 3, we also have

yk, zk, tk → x∗ as k → ∞.
¤
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