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BIFURCATIONS AND FEEDBACK CONTROL IN AN

EXPLOITED PREY-PREDATOR SYSTEM WITH STAGE

STRUCTURE FOR PREY†

T. K. KAR∗ AND U. K. PAHARI

Abstract. In the present paper we consider a differential-algebraic prey-
predator model with stage structure for prey and harvesting of predator
species. Stability and instability of the equilibrium points are discussed and
it is observed that the model exhibits a singular induced bifurcation when
the economic profit is zero. It indicates that the zero economic profit brings
impulse, i.e. rapid expansion of the population and the system collapses.
For the purpose of stabilizing the system around the positive equilibrium,
a state feedback controller is designed. Finally, numerical simulations are
given to show the consistency with theoretical analysis.
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1. Introduction

The study of renewable resources such as fisheries, forestry and wildlife is
becoming more and more interesting field of research [1, 2, 3, 5, 8]. In the
natural world it has been noticed that the life history of many species is com-
posed of at least two stages: immature and mature, with significantly different
morphological and behavioral characteristics. So the study of stage structured
predator-prey systems has attracted considerable attention in recent years, as a
way to overcome the limitations of classical Lotka-Volterra models.
Again the biological resources in the prey-predator ecosystem is commercially
harvested and sold with the aim of achieving economic interest. For this reason
harvesting plays an important role in the study of biological resources. Further-
more, the harvest effort is usually influenced by the variation of economic interest
of harvesting. To formulate a biological economic system from an economic point
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of view and to investigate the dynamical behavior of the model system many
scientists use differential-algebraic equations. The differential equations inves-
tigate the dynamics of the biological species such as prey, predators etc., and
the algebraic equation studies the harvest effort in harvesting from an economic
perspective. The pioneering work of Aiello and Freedman [1] on a single species
growth model with stage structure represents a mathematically more careful and
biologically meaningful formulation approach. They studied a model of single
species population growth incorporating stage structure as a reasonable gen-
eralization of the classical logistic model. Song and Chen [9] have considered
the exploitation of a predator-prey population with stage structure and harvest-
ing for the prey and showed that the nonnegative equilibrium point is globally
asymptotically stable under a certain condition. The effects on population size
and yield of different levels of harvesting of a predator in a predator-prey system
have been explored by Matsuda and Abrams [7] and showed that the preda-
tor may increase in population size with increasing fishing effort. Zhang and
Zhang [11]; and Zhang et.al [12] have established a class of differential-algebraic
biological economic models by several differential equations and an algebraic
equation. They have studied the effect of harvest effort on ecosystem from an
economic perspective. Zhang and Zhang [13] systematically studied a hybrid
predator prey economic model, which is formulated by differential-difference-
algebraic equations. They proved that this model exhibits two bifurcation phe-
nomena at the inter sampling instants.
In this paper, we consider a differential-algebraic model for a prey-predator
system with a stage-structure for the prey species and harvesting of predator
species. We denote the density of immature prey, mature prey and predator by
x1, x2 and x3 respectively. Also we make the following assumptions:
(i) The birth rate of the immature population is proportional to the existing
mature population with proportionality constant α; for the immature popula-
tion, the death rate and transformation rate to mature are proportional to the
existing immature population with proportionality constants r1 and β; the death
rate of immature population due to interaction among themselves is of logistic
type.
(ii) The death rate of the mature population is proportional to the existing ma-
ture population with proportionality constant r2 .
(iii) The predator consumes the prey species only and the death rate of the
predator is of logistic type.
According to these assumptions, we can set up the stage-structured predator-
prey model as follows:

ẋ1 = αx2 − r1x1 − βx1 − ηx2
1 − β1x1x3,

ẋ2 = βx1 − r2x2, (1)

ẋ3 = x3 (−r + kβ1x1 − η1x3) ,
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where α, r1, r2, β, β1, η, η1, r, k are all positive constants. Here k is the digesting
constant, η is the intra-specific competition rate and ẋi = dxi/dt, i = 1, 2, 3.
Let us take a transformation as

y1 =
kβ1

r2
x1, y2 =

kβ1

β
x2, y3 =

η1
r2

x3, dt =
1

r2
dτ.

Then the model (1) becomes

ẏ1 = ay2 − by1 − cy21 − dy1y3,

ẏ2 = y1 − y2, (2)

ẏ3 = y3(−e+ y1 − y3),

where

ẏi = dyi/dτ, a =
αβ

r22
, b =

r1 + β

r2
, c =

η

kβ1
, d =

β1

η1
, e =

r

r2
, i = 1, 2, 3.

2. Model formulation

We assume that the predator species is subjected to harvesting. The func-
tional form of harvest is generally considered using the phrase catch-per-unit-
effort (CPUE) hypothesis [3] to describe an assumption that catch per unit effort
is proportional to the stock level. Thus we consider the harvest function h(t) as

h(t) = qEy3, (3)

where q is the catchability coefficient and E is the harvesting effort. To investi-
gate the economic interest of the yield we take another equation as

Net Economic Revenue (v) = TotalRevenue (TR)− TotalCost (TC)

= pqy3E − c1E

= (pqy3 − c1)E, (4)

where p is the price of unit harvested predator and c1 is the cost of unit har-
vest effort. Thus considering the economic interest of the system we take the
differential algebraic model which consists of three differential equations and an
algebraic equation as follows:

ẏ1 = ay2 − by1 − cy21 − dy1y3,

ẏ2 = y1 − y2, (5)

ẏ3 = y3(−e+ y1 − y3 − qE),

0 = (pqy3 − c1)E − v.

The differential-algebraic model system (5) can be expressed in the following
form:

A

[
Ẋ
0

]
=

[
f(X,E, v)

g

]
(6)
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where

X = (y1, y2, y3)
T , A =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


 and

f(X,E, v) =




f1(X,E, v)
f2(X,E, v)
f3(X,E, v)


 =




ay2 − by1 − cy21 − dy1y3
y1 − y2

y3(−e+ y1 − y3 − qE


 ,

g = (pqy3 − c1)E − v.

When the economic profit is zero, the system (5) takes the form:

ẏ1 = ay2 − by1 − cy21 − dy1y3,

ẏ2 = y1 − y2, (7)

ẏ3 = y3(−e+ y1 − y3 − qE),

0 = (pqy3 − c1)E.

3. Equilibrium and stability analysis

The system (7) has
(i) a trivial equilibrium point P0(0, 0, 0, 0).
(ii) a boundary equilibrium pointP1(

a−b
c , a−b

c , 0, 0) which exists if a > b.
(iii) another equilibrium point P2(ȳ1, ȳ2, ȳ3, 0) which exists if a > b+ ce where

ȳ1 =
a− b+ de

c+ d
, ȳ2 = ȳ1, ȳ3 =

a− b− ce

c+ d
.

(iv) an interior equilibrium point P3(y
∗
1 , y

∗
2 , y

∗
3 , E

∗) which exists if

(a− b− ce)pq > c1(c+ d),

where

y∗1 =
(a− b)pq − c1d

cpq
, y∗2 = y∗1 , y∗3 =

c1
pq

, E∗ =
(a− b− ce)pq − c1(c+ d)

cpq2
.

From the system (7) we get

J1 = DXf −DEf(DEg)−1DXg =




−b− 2cy1 − dy3 a −dy1
1 −1 0

y3 0 −e+ y1 − 2y3 + c1qE
pqy3−c1




The characteristic equation of the matrix J1 is det(λI − J1) = 0, i.e.

λ3 + a1(X,E)λ2 + a2(X,E)λ+ a3(X,E) = 0

where

a1(X,E) = 1 + e− y1 + 2y3 − c1qE

pqy3 − c1
+ b+ 2cy1 + dy3,
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a2(X,E) = (b+ 2cy1 + dy3 + 1)(e− y1 + 2y3 − c1qE

pqy3 − c1
) + b+ 2cy1 + dy3 + dy1 − a,

a3(X,E) = (b+ 2cy1 + dy3 − a)(e− y1 + 2y3 − c1qE

pqy3 − c1
) + dy1.

It is easy to verify that, the equilibrium point P0 is a stable node for a > b ; P1

is unstable and P2 is stable if the conditions a1 > 0, a3 > 0 and a1a2 > a3 are
satisfied. For the interior equilibrium point P3 we have the following theorem.

Theorem 1. The system (5) has a singularity induced bifurcation (SIB) at the
interior equilibrium and v = 0 is a bifurcation value. Furthermore, a stability
switch occurs as v increases through 0.

Proof. We see that at the interior equilibrium point P3,

g(X,E, v) =

{
0, if v=0;
nonzero, if v 6= 0

which implies that dimker (DEg(X,E, v)|P3) = 1.

Let 4 = DEg(X,E, v) = pqy3 − c1.

Then it has a simple zero eigen value at P3 .

Now,

∣∣∣∣
DXf DEf
DXg DEg

∣∣∣∣
P3

=

∣∣∣∣∣∣∣∣

−a− cy∗1 a −dy∗1 0
1 −1 0 0
y∗3 0 −y∗3 −qy∗3
0 0 pqE∗ 0

∣∣∣∣∣∣∣∣
= cpq2y∗1y

∗
3E

∗ 6= 0

and,

∣∣∣∣∣∣

DXf DEf Dvf
DXg DEg Dvg
DX4 DE4 Dv4

∣∣∣∣∣∣
P3

=

∣∣∣∣∣∣∣∣∣∣

−a− cy1 a −dy1 0 0
1 −1 0 0 0
y3 0 −y3 −qy3 0
0 0 pqE 0 −1
0 0 pq 0 0

∣∣∣∣∣∣∣∣∣∣
P3

= cpq2y∗1y
∗
3 6= 0.

Again,

trace (DEfadj(DEg)DXg)P3 = trace




0
0

−qy3


(

0 0 pqE
)
P3

= trace




0 0 0
0 0 0
0 0 −pq2y3E




P3

= −pq2y∗3E
∗ 6= 0.
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Based on the above analysis, three items can be obtained as follows:

(I) f(X(0), E(0), 0) = 0 and g(X(0), E(0), 0) = 0 and 4 = DEg(X,E, v) has a
simple zero eigen value at P3 and trace (DEfadj(DEg)DXg)P3 6= 0.

(II)

(
DXf DEf
DXg DEg

)
is non singular at P3.

(III)




DXf DEf Dvf
DXg DEg Dvg
DX4 DE4 Dv4


 is non singular at P3.

The conditions for occurrence of singularity induced bifurcation (SIB) are all
satisfied for the system (5) (see Venkatasubramanian et.al. [10] and hence the
system (5) undergoes singular induced bifurcation at the interior equilibrium
point P3(y

∗
1 , y

∗
2 , y

∗
3 , E

∗) when the bifurcation parameter v = 0. Again it is noted
that

M = −trace (DEfadj(DEg)DXg)P3 = pq2y∗3E
∗ > 0

and

N =

(
Dv4− (

DX4 DE4
)( DXf DEf

DXg DEg

)−1 (
Dvf
Dvg

))

P3

=
1

E∗ > 0.

Consequently, we have

M

N
= pq2y∗3E

∗2

> 0. (8)

Therefore, when v increases through 0, one eigen value (denoted by λ1) of the
system (5) moves from C− to C+ along the real axis by diverging through infin-
ity (see Theorem 3 in Venkatasubramanian et. al. [10]). It brings impulse, i.e.
rapid expansion of the population in biological explanation.

We now calculate the other eigen values (denoted by λ2 and λ3) of the
differential-algebraic model system (5) at P3 . We denote the jacobian matrix
at P3 by

JP3 =




−a− cy∗1 a −dy∗1 0
1 −1 0 0
y∗3 0 −y∗3 −qy∗3
0 0 pqE∗ 0


 (9)

According to the leading matrix A in the system (6) and JP3 , we obtain the
characteristic equation of the system (5) at P3 as

det (λA− JP3) = 0,

which can be expressed as follows:∣∣∣∣
λ+ (a+ cy∗1) −a

−1 λ+ 1

∣∣∣∣ = 0
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i.e. λ2 + (a+ cy∗1 + 1)λ+ cy∗1 = 0.

Therefore, λ1 + λ2 = −(a+ cy∗1 + 1) < 0 and λ1λ2 = cy∗1 > 0.

Thus the eigen values λ2 and λ3 of the differential-algebraic model system (5)
at P3 are negative. And hence they are continuous, nonzero and can not jump
from one half open complex plane to another as v increases through 0. Therefore,
they are continuous and bounded in the C−1 half plane as v increase through 0
and their movement behaviors have no influence on the stability of the system
(5) at the interior equilibrium point P3. Therefore, it can be concluded that the
system (5) is stable at P3 as v < 0 and it is unstable as v > 0. Consequently, a
stability switch occurs as economic profit v increases through 0. This completes
the proof. ¤

Remark. We have seen from the above discussion of theorem 1 that when
economic interest of harvesting becomes positive then the differential-algebraic
model system (5) becomes unstable and an impulsive phenomenon occurs, i.e.
if we consider a prey-predator fishery, then a rapid expansion of the population
occurs. If this phenomenon lasts for a period of time, the species population
will be beyond the carrying capacity of the environment and the fishery will be
out of balance which may lead to collapse of the sustainable ecosystem of the
prey-predator fishery.
On the other hand, government and society or fishery agencies always try to
make profit from fishery and so they are usually interested in the case of posi-
tive economic interest of harvesting. Since the dynamical behavior of the system
(5) is unstable around the interior equilibrium point when the economic interest
is positive, it is impossible for sustainable development of harvesting on fishery.

Therefore, it is necessary to eliminate the impulsive phenomenon caused by
singularity induced bifurcation to resume the sustainability of the ecosystem and
stabilize the system (5) for positive economic interest and for this reason some
related measures should be taken.

4. Feedback Control for Singular Induced Bifurcation

In the theorem1 we see that the system (5) has a singularity induced bifur-
cation around the interior equilibrium point when v = 0, and the system (5) is
unstable around the interior equilibrium point in the case of positive economic
profit. In this section, when we have a positive economic profit, a feedback con-
troller is designed to eliminate the SIB of the system (5) and stabilize the system
around the interior equilibrium. Furthermore, a numerical simulation is given
to illustrate the effectiveness of the controller.

4.1 Design of the feedback control According to the leading matrix A in
the model (5) and JP3 , it can be calculated that the rank

(
JP3 AJP3 A2JP3 A3JP3

)
=
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4. By using theorem 2-2.1 in Dai [4], it is easy to show the system (5) is locally
controllable at P3. Consequently, a feedback controller can be applied to stabi-
lize the system (5) at P3.
By using the theorem 3-1.2 in Dai [4], a feedback controller u(t) = K(E(t)−E∗)
where K is the feedback gain and E∗ is a component of P3 i.e.

E∗ = (a−b−ce)pq−c1(c+d)
cpq2 , can be applied to stabilize the system (5) around P3.

Applying the controller u(t) = K(E(t) − E∗) we get a controlled differential-
algebraic model system as follows:

ẏ1 = ay2 − by1 − cy21 − dy1y3,

ẏ2 = y1 − y2, (10)

ẏ3 = y3(−e+ y1 − y3 − qE),

0 = (pqy3 − c1)E − v +K(E(t)− E∗),

where y1, y2, y3, E, a, b, c, d, e, c1, v, q have the same biological interpretations as
mentioned in the system (5). The feedback controller u(t) = K(E(t)−E∗) will
be designed in the following theorem 2.

Theorem 2. If the feedback gain K satisfies the following inequality,

K > max{P,Q,R}
where

P =
pq2E∗y3

a+ cy∗1 + y∗3 + 1
, Q =

pq2E∗c
c+ d

, R =
B1 +

√
B2

1 − 4A1C2

2A1

and

A1 = (a+ cy∗1 + y∗3) {cy∗1 + y∗3(a+ cy∗1 + dy∗1 + 1)}+ (cy∗1 + ay∗3 + y∗3) ,

B1 = pq2E∗y∗3
{
(a+ cy∗1 + 1)2 + 2y∗3(a+ cy∗1 + 1) + dy∗1y

∗
3

}
,

C2 = (pq2E∗y∗3)
2(a+ cy∗1 + 1).

then the system (10) is stable around P3.

Proof. The Jacobian of model (10) evaluated around P3 takes the form

J̃P3 =




−a− cy∗1 a −dy∗1 0
1 −1 0 0
y∗3 0 −y∗3 −qy∗3
0 0 pqE∗ K


 (11)

According to the leading matrix A in the model (5) and J̃P3 , the characteris-

tic equation of the system (10) around P3 is det(λA − ˜JP3) = 0 , which can be
expressed as follows:

λ3 +A2λ
2 +B2λ+ C3 = 0
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where

A2 = (a+ cy∗1 + y∗3 + 1)− pq2E∗y∗3
K

,

B2 = cy∗1 + y∗3 (a+ cy∗1 + dy∗1 + 1)− (a+ cy∗1 + 1)(pq2E∗y∗3)
K

,

C3 = y∗1y
∗
3(c+ d)− pq2E∗y∗3cy

∗
1

K
.

By using Routh-Hurwitz criteria [6], the necessary and sufficient condition for
the stability of the system (10) around P3 is that the feedback gain K satisfies
K > max{P,Q,R} where

P =
pq2E∗y3

a+ cy∗1 + y∗3 + 1
, Q =

pq2E∗c
c+ d

, R =
B1 +

√
B2

1 − 4A1C2

2A1

and

A1 = (a+ cy∗1 + y∗3) {cy∗1 + y∗3(a+ cy∗1 + dy∗1 + 1)}+ (cy∗1 + ay∗3 + y∗3) ,

B1 = pq2E∗y∗3
{
(a+ cy∗1 + 1)2 + 2y∗3(a+ cy∗1 + 1) + dy∗1y

∗
3

}
,

C2 = (pq2E∗y∗3)
2(a+ cy∗1 + 1).

Consequently, if the feedback gain K satisfies the above inequality, then system
(10) is stable around P3 and this completes the proof. ¤

5. The model with positive economic profit

When economic profit v is positive then we can get two interior equilibrium
points of the system (5) as P̂1(ŷ1, ŷ2, ŷ3, Ê) and P̂2(ŷ1, ŷ2, ¯̄y3, Ê) where

ŷ1 = ŷ2 =
a− b− dŷ3

c
,

ŷ3 =
c1(c+ d) + (a− b− ce)pq +

√
{c1(c+ d)− (a− b− ce)pq}2 − 4pq2cv(c+ d)

2(c+ d)pq
,

¯̄y3 =
c1(c+ d) + (a− b− ce)pq −

√
{c1(c+ d)− (a− b− ce)pq}2 − 4pq2cv(c+ d)

2(c+ d)pq
,

Ê =
v

pqŷ3 − c1
.

These two interior equilibrium points exist if

b− a+ ce < min{ c1(c+d)
pq , cqv

c1
}

We consider the stability of an interior equilibrium point when economic profit
is positive numerically in the subsequent article.
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6. Numerical Simulation

Numerical simulations are given to illustrate the results obtained earlier. For
this we take the parameters value as:
a = 150, b = 15, c = 5, d = 3, e = 1.2, p = 2.5, q = 1, c1 = 30

Case-I: (i) When v = 0 we find that the interior equilibrium point of the
system (5) is (19.8, 19.8, 12, 6.6).

(ii) When v is taken as positive, i.e. v = 0.0001, then the model (5) becomes:

ẏ1 = 150y2 − 15y1 − 5y21 − 3y1y3,

ẏ2 = y1 − y2,

ẏ3 = y3(−1.2 + y1 − y3 − E),

0 = (2.5y3 − 30)E − 0.0001.

In this case we find the eigen values of the system from the Jacobian matrix J1
given above as 1.3068× 107,−249.603,−0.396629. As one of the eigen values is
positive, the system is unstable around the equilibrium point (19.8, 19.8, 12, 6.6).

(iii) When v is taken as negative, i.e. v = −0.0001, then the model (5)
becomes:

ẏ1 = 150y2 − 15y1 − 5y21 − 3y1y3,

ẏ2 = y1 − y2,

ẏ3 = y3(−1.2 + y1 − y3 − E),

0 = (2.5y3 − 30)E + 0.0001.

In this case we find the eigen values of the system from the Jacobian matrix J1
given above as −1.3068× 107,−249.603,−0.396629 . As all the eigen values are
negative, the system is stable around the equilibrium point (19.8, 19.8, 12, 6.6).

Remark. In case-I, we see that the system (5) is stable at (19.8, 19.8, 12, 6.6)
as v < 0 and it is unstable as v > 0.Thus the system (5) has singularity induced
bifurcation (SIB) at the interior equilibrium point (19.8, 19.8, 12, 6.6) , v = 0 is
a bifurcation value and a stability switch occurs as v increases through 0.

(iv) Based on the analysis in section 4, a feedback controller
u(t) = K(E(t)−6.6) can be applied to stabilize the system (5) at (19.8, 19.8, 12, 6.6)

and then the system (5) with the state feedback controller takes the form as fol-
lows:

ẏ1 = 150y2 − 15y1 − 5y21 − 3y1y3,

ẏ2 = y1 − y2, (12)

ẏ3 = y3(−1.2 + y1 − y3 − E),
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0 = (2.5y3 − 30)E +K(E(t)− 6.6).

We find that if K > max{P,Q,R}, i.e. if K > max{0.755725, 10.3125, 12.9914},
i.e. if K > 12.991, then the singular induced bifurcation is eliminated and the
system (5) is stable around (19.8, 19.8, 12, 6.6) . If we take K = 15 , three eigen
values of the system (12) are −246.735,−1.03226+1.15839i,−1.03226−1.15839i.
Thus all the three eigen values have negative real parts and the system is stable
around (19.8, 19.8, 12, 6.6).

Case-II: (i) For positive economic profit, we take v = 10 and all other param-
eter values remain same, i.e. a = 150, b = 15, c = 5, d = 3, e = 1.2, p = 2.5, q =
1, c1 = 30 and we find that the interior equilibrium point of the system (5) is
(19.3571, 19.3571, 12.7381, 5.41896). In this case the eigen values of the system
are −245.131, 78.4889,−0.367894. As one of the eigen values is positive, the sys-
tem (5) is unstable around (19.3571, 19.3571, 12.7381, 5.41896) for the positive
economic profit.

(ii) When a feedback controller u(t) = K(E(t)− 5.41896) is applied then the
system (5) with v = 10 takes the form:

ẏ1 = 150y2 − 15y1 − 5y21 − 3y1y3,

ẏ2 = y1 − y2, (13)

ẏ3 = y3(−1.2 + y1 − y3 − E),

0 = (2.5y3 − 30)E − 10 +K(E(t)− 5.41896).

We find K = 15 and the eigen values are −244.344,−5.15755,−0.778514 and
therefore the system becomes stable.

Remark. In case-I we see that when v = 0 then a singularity induced bifurcation
occurs at the interior equilibrium point (19.8, 19.8, 12, 6.6) and this singularity
is eliminated by applying a feedback controller and also the system becomes
stable.
In case-II we see that when v > 0 ( here we take v = 10 ), then the system
is unstable at the interior equilibrium point (19.3571, 19.3571, 12.7381, 5.41896)
and when we use a feedback controller then the system becomes stable.

7. Conclusion

This paper analyzes the dynamical behavior of a prey-predator system with
stage structure for prey. It has been shown that the system has a singularity
induced bifurcation around an interior equilibrium point for zero economic profit
and this singularity brings impulse and as a result the ecosystem will collapse.
Also the system becomes unstable around the interior equilibrium point in case of
positive economic profit. After applying the feedback controller, the system can
be stabilized around the interior equilibrium point and the impulse phenomenon
is also eliminated. The elimination of singularity induced bifurcation implies
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that the ecological balance in the prey-predator ecosystem is restored. This
provides us a bio-economic way of maintaining the sustainable development of
the prey-predator ecosystem in the case of positive economic profit. Numerical
simulations are given to show the consistency of the results with theoretical
analysis.
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