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SOME IDENTITIES OF THE GENOCCHI NUMBERS AND

POLYNOMIALS ASSOCIATED WITH BERNSTEIN

POLYNOMIALS
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Abstract. Recently, several mathematicians have studied some interest-
ing relations between extended q-Euler number and Bernstein polynomi-
als(see [3, 5, 7, 8, 10]). In this paper, we give some interesting identities
on the Genocchi polynomials and Bernstein polynomials.
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1. Introduction

Throughout this paper, let p be a fixed odd prime number. The symbol, Zp,
Qp and Cp denote the ring of p-adic integers, the field of p-adic rational numbers
and the completion of algebraic closure of Qp. Let N be the set of natural
numbers and Z+ = N ∪ {0}. As well known definition, the p-adic absolute value

is given by |x|p = p−r where x = pr
t

s
with (t, p) = (s, p) = (t, s) = 1. When one

talks of q-extension, q is variously considered as an indeterminate, a complex
number q ∈ C, or a p-adic number q ∈ Cp. In this paper we assume that q ∈ Cp

with |1− q|p < 1.
We assume that UD(Zp) is the space of the uniformly differentiable function

on Zp. For f ∈ UD(Zp), the fermionic p-adic invariant integral on Zp is defined
as follows:

I−1(f) =

∫

Zp
f(x)dµ−1(x) = lim

N→∞

pN−1∑
x=0

f(x)(−1)x, see [1, 2, 3, 4] . (1.1)
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For n ∈ N, let fn(x) = f(x + n) be translation. As well known equation, by
(1.1), we have

∫

Zp
f(x+ n)dµ−1(x) = (−1)n

∫

Zp
f(x)dµ−1(x) + 2

n−1∑

l=0

(−1)n−1−lf(l). (1.2)

The Genocchi numbers are defined by the generating function as follows:

2t

et + 1
=

∞∑
n=0

Gn
tn

n!
, see [3, 4, 11, 12]. (1.3)

The Genocchi numbers are defined by the generating function as follows:

2t

et + 1
ext =

∞∑
n=0

Gn(x)
tn

n!
, see [3, 4, 11, 12]. (1.4)

From (1.4), we note that

Gn(x) =

n∑

l=0

(
n

l

)
Glx

n−l. (1.5)

From (1.2) and (1.4), for n = 1, we have

t

∫

Zp
e(x+y)tdµ−1(y) =

2t

et + 1
ext =

∞∑
n=0

Gn(x)
tn

n!
. (1.6)

By (1.6), we obtain

G0(x) = 0,

∫

Zp
(x+ y)ndµ−1(y) =

Gn+1(x)

n+ 1
, for n ∈ N. (1.7)

As well known definition, Bernstein polynomials of degree n are given by

Bk,n(x) =

(
n

k

)
xk(1− x)n−k, where x ∈ [0, 1], n, k ∈ Z+. (1.8)

In [1], Kim introduced p-adic extension of Bernstein polynomials as follows:

Bk,n(x) =

(
n

k

)
xk(1− x)n−k, where x ∈ Zp and n, k ∈ Z+. (1.9)

In this paper, we investigate some properties for Genocchi numbers and poly-
nomials. By using these properties, we give some interesting identities on Genoc-
chi polynomials and Bernstein polynomials.

2. Some identities on the Bernstein and Genocchi polynomials

From (1.6), we can derive the following recurrence formula for the Genocchi
numbers:

G0 = 0, and (G+ 1)n +Gn =

{
2, if n = 1,
0, if n > 1,

(2.1)

with usual convention about replacing Gn by Gn.
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By (1.4), we easily get

∞∑
n=0

Gn(1− x)(−1)n
tn

n!
= (−1)

2t

et + 1
ext = (−1)

∞∑
n=0

Gn(x)
tn

n!
. (2.2)

By (2.2), we obtain the following theorem.

Theorem 2.1. Let n ∈ Z+. Then we have

Gn(x) = (−1)n−1Gn(1− x).

From (1.7), we note that

G0 = 0,

∫

Zp
xndµ−1(x) =

Gn+1

n+ 1
, for n ∈ N. (2.3)

By (2.1), for n ∈ N with n > 1, we have

Gn(2) = (G+ 1 + 1)n =

n∑

l=0

(
n

l

)
Gl(1)

=

n∑

l=1

(
n

l

)
Gl(1)

= (nG1(1)) +

n∑

l=2

(
n

l

)
Gl(1)

= 2n−Gn(1)

= 2n+Gn.

(2.4)

Therefore, by (2.4), we obtain the following theorem.

Theorem 2.2. For n ∈ N with n > 1, we have

Gn(2) = 2n+Gn.

By (2.3) and Theorem 2.2, we obtain the following corollary.

Corollary 2.3. For n ∈ N with n > 1, we have

∫

Zp
(x+ 2)ndµ−1(x) = 2 +

Gn+1

n+ 1
.

By (1.7), (2.3) and Corollary 2.3, we know that
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∫

Zp
(1− x)ndµ−1(x) = (−1)n

∫

Zp
(x− 1)ndµ−1(x)

= (−1)n
Gn+1(−1)

n+ 1

=
Gn+1(2)

n+ 1

=

∫

Zp
(x+ 2)ndµ−1(x)

= 2 +
Gn+1

n+ 1

= 2 +

∫

Zp
xndµ−1(x).

Therefore, we have the following theorem.

Theorem 2.4. For n ∈ N with n > 1, we have∫

Zp
(1− x)ndµ−1(x) = 2 +

∫

Zp
xndµ−1(x).

In (1.9), we take the twisted fermionic p-adic invariant integral on Zp for one
Bernstein polynomials as follows:

∫

Zp
Bk,n(x)dµ−1(x) =

(
n

k

) n−k∑

l=0

(
n− k

l

)
(−1)n−k−l

∫

Zp
xn−ldµ−1(x)

=

(
n

k

) n−k∑

l=0

(
n− k

l

)
(−1)n−k−l Gn−l+1

n− l + 1

=

(
n

k

) n−k∑

l=0

(
n− k

l

)
(−1)l

Gk+l+1

k + l + 1
,

(2.5)

where n, k ∈ Z+.
From the reflection symmetric properties of Bernstein polynomials, we note

that
Bk,n(x) = Bn−k,n(1− x), where n, k ∈ Z+ and x ∈ Zp. (2.6)

For n, k ∈ Z+ with n > k + 1, we have∫

Zp
Bk,n(x)dµ−1(x) =

∫

Zp
Bn−k,n(1− x)dµ−1(x)

=

(
n

k

) k∑

l=0

(
k

l

)
(−1)k−l

∫

Zp
(1− x)n−ldµ−1(x)

=

(
n

k

) k∑

l=0

(
k

l

)
(−1)k−l

(
2 +

∫

Zp
xn−ldµ−1(x)

)
.
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Therefore, we have the following theorem.

Theorem 2.5. For n, k ∈ Z+ with n > k + 1, we have
∫

Zp
Bk,n(x)dµ−1(x) =

(
n

k

) k∑

l=0

(
k

l

)
(−1)k−l

(
2 +

Gn−l+1

n− l + 1

)
.

By (2.5) and Theorem 2.5, we have the following theorem.

Theorem 2.6. Let n, k ∈ Z+ with n > k + 1. Then we have

n−k∑

l=0

(
n− k

l

)
(−1)l

Gk+l+1

k + l + 1
=

k∑

l=0

(
k

l

)
(−1)k−l

(
2 +

Gn−l+1

n− l + 1

)
.

Let n1, n2, k ∈ Z+ with n1 + n2 > 2k + 1. Then we get∫

Zp
Bk,n1

(x)Bk,n2
(x)dµ−1(x)

=

(
n1

k

)(
n2

k

) 2k∑

l=0

(
2k

l

)
(−1)l+2k

∫

Zp
(1− x)n1+n2−ldµ−1(x)

=

(
n1

k

)(
n2

k

) 2k∑

l=0

(
2k

l

)
(−1)l+2k

∫

Zp
(x+ 2)n1+n2−ldµ−1(x)

=

(
n1

k

)(
n2

k

) 2k∑

l=0

(
2k

l

)
(−1)l+2k

(
2 +

∫

Zp
xn1+n2−ldµ−1(x)

)
.

Therefore, we obtain the following theorem.

Theorem 2.7. For n1, n2 k ∈ Z+ with n1 + n2 > 2k + 1, we have∫

Zp
Bk,n1(x)Bk,n2(x)dµ−1(x)

=

(
n1

k

)(
n2

k

) 2k∑

l=0

(
2k

l

)
(−1)l+2k

(
2 +

Gn1+n2−l+1

n1 + n2 − l + 1

)
.

By simple calculation, we easily see that∫

Zp
Bk,n1(x)Bk,n2(x)dµ−1(x)

=

(
n1

k

)(
n2

k

) n1+n2−2k∑

l=0

(−1)l
(
n1 + n2 − 2k

l

)∫

Zp
xl+2kdµ−1(x)

=

(
n1

k

)(
n2

k

) n1+n2−2k∑

l=0

(−1)l
(
n1 + n2 − 2k

l

)
Gl+2k+1

l + 2k + 1
,

(2.7)

where n1, n2, k ∈ Z+. Therefore, by (2.7) and Theorem 2.7, we obtain the
following theorem.
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Theorem 2.8. Let n1, n2, k ∈ Z+ with n1 + n2 > 2k + 1. Then we have

2k∑

l=0

(
2k

l

)
(−1)l+2k

(
2 +

Gn1+n2−l+1

n1 + n2 − l + 1

)

=

n1+n2−2k∑

l=0

(−1)l
(
n1 + n2 − 2k

l

)
Gl+2k+1

l + 2k + 1
.

For n1, n2, n3, k ∈ Z+ with n1+n2+n3 > 3k+1, by the symmetry of Bernstein
polynomials, we see that

∫

Zp
Bk,n1(x)Bk,n2(x)Bk,n3(x)dµ−1(x)

=

(
n1

k

)(
n2

k

)(
n3

k

) 3k∑

l=0

(
3k

l

)
(−1)l+3k

∫

Zp
(1− x)n1+n2+n3−ldµ−1(x)

=

(
n1

k

)(
n2

k

)(
n3

k

) 3k∑

l=0

(
3k

l

)
(−1)l+3k

∫

Zp
(x+ 2)n1+n2+n3−ldµ−1(x)

=

(
n1

k

)(
n2

k

)(
n3

k

) 3k∑

l=0

(
3k

l

)
(−1)l+3k

(
2 +

∫

Zp
xn1+n2+n3−ldµ−1(x)

)
.

Therefore, we have the following theorem.

Theorem 2.9. For n1, n2, n2, k ∈ Z+ with n1 + n2 + n3 > 3k + 1, we have
∫

Zp
Bk,n1(x)Bk,n2(x)Bk,n3(x)dµ−1(x)

=

(
n1

k

)(
n2

k

)(
n3

k

) 3k∑

l=0

(
3k

l

)
(−1)l+3k

(
2 +

Gn1+n2+n3−l+1

n1 + n2 + n3 − l + 1

)
.

In the same manner, multiplication of three Bernstein polynomials can be
given by the following relation:
∫

Zp
Bk,n1(x)Bk,n2(x)Bk,n3(x)dµ−1(x)

=

(
n1

k

)(
n2

k

)(
n3

k

) n1+n2+n3−3k∑

l=0

(−1)l
(
n1 + n2 + n3 − 3k

l

)∫

Zp
xl+3kdµ−1(x)

=

(
n1

k

)(
n2

k

)(
n3

k

) n1+n2+n3−3k∑

l=0

(−1)l
(
n1 + n2 + n3 − 3k

l

)
Gl+3k+1

l + 3k + 1
,

where n1, n2, n3, k ∈ Z+ with n1 + n2 + n3 > 3k+1. Therefore, by Theorem 2.9
we obtain the following theorem.
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Theorem 2.10. Let n1, n2, n3, k ∈ Z+ with n1 + n2 + n3 > 3k + 1. Then we
have

3k∑

l=0

(
3k

l

)
(−1)l+3k

(
2 +

Gn1+n2+n3−l+1

n1 + n2 + n3 − l + 1

)

=

n1+n2+n3−3k∑

l=0

(−1)l
(
n1 + n2 + n3 − 3k

l

)
Gl+3k+1

l + 3k + 1
.

Using the above theorem and mathematical induction, we have the following
theorem.

Theorem 2.11. Let m ∈ N. For n1, n2, . . . , nm, k ∈ Z+ with n1 + · · · +
nm > mk + 1, the multiplication of the sequence of Bernstein polynomials
Bk,n1

(x), . . . , Bk,nm
(x) with different degrees under fermionic p-adic invariant

integral on Zp can be given as
∫

Zp

(
m∏

i=1

Bk,ni(x)

)
dµ−1(x)

=

(
m∏

i=1

(
ni

k

)) mk∑

l=0

(
mk

l

)
(−1)l+mk

(
2 +

Gn1+···+nm−l+1

n1 + · · ·+ nm − l + 1

)
.

We also easily see that
∫

Zp

(
m∏

i=1

Bk,ni(x)

)
dµ−1(x)

=

(
m∏

i=1

(
ni

k

)) n1+···+nm−mk∑

l=0

(
n1 + · · ·+ nm −mk

l

)
(−1)l

Gl+mk+1

l +mk + 1
.

(2.8)

By Theorem 2.11 and (2.8), we have the following corollary.

Corollary 2.12. Let m ∈ N. For n1, n2, . . . , nm, k ∈ Z+ with n1 + · · ·+ nm >
mk + 1, we have

mk∑

l=0

(
mk

l

)
(−1)l+mk

(
2 +

Gn1+···+nm−l+1

n1 + · · ·+ nm − l + 1

)

=

n1+···+nm−mk∑

l=0

(
n1 + · · ·+ nm −mk

l

)
(−1)l

Gl+mk+1

l +mk + 1
.
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