J. Appl. Math. & Informatics Vol. **29**(2011), No. 5 - 6, pp. 1221 - 1228 Website: http://www.kcam.biz

SOME IDENTITIES OF THE GENOCCHI NUMBERS AND POLYNOMIALS ASSOCIATED WITH BERNSTEIN POLYNOMIALS

H. Y. LEE*, N. S. JUNG, C. S. RYOO

ABSTRACT. Recently, several mathematicians have studied some interesting relations between extended q-Euler number and Bernstein polynomials(see [3, 5, 7, 8, 10]). In this paper, we give some interesting identities on the Genocchi polynomials and Bernstein polynomials.

AMS Mathematics Subject Classification : 11B68, 11S40, 11S80. *Key words and phrases* : Euler numbers and polynomials, Euler numbers and polynomials, Bernstein polynomials.

1. Introduction

Throughout this paper, let p be a fixed odd prime number. The symbol, \mathbb{Z}_p , \mathbb{Q}_p and \mathbb{C}_p denote the ring of p-adic integers, the field of p-adic rational numbers and the completion of algebraic closure of \mathbb{Q}_p . Let \mathbb{N} be the set of natural numbers and $\mathbb{Z}_+ = \mathbb{N} \cup \{0\}$. As well known definition, the p-adic absolute value is given by $|x|_p = p^{-r}$ where $x = p^r \frac{t}{s}$ with (t, p) = (s, p) = (t, s) = 1. When one talks of q-extension, q is variously considered as an indeterminate, a complex number $q \in \mathbb{C}$, or a p-adic number $q \in \mathbb{C}_p$. In this paper we assume that $q \in \mathbb{C}_p$ with $|1 - q|_p < 1$.

We assume that $UD(\mathbb{Z}_p)$ is the space of the uniformly differentiable function on \mathbb{Z}_p . For $f \in UD(\mathbb{Z}_p)$, the fermionic *p*-adic invariant integral on \mathbb{Z}_p is defined as follows:

$$I_{-1}(f) = \int_{\mathbb{Z}_p} f(x) d\mu_{-1}(x) = \lim_{N \to \infty} \sum_{x=0}^{p^N - 1} f(x) (-1)^x, \text{ see } [1, 2, 3, 4] .$$
(1.1)

Received February 14, 2011. Revised June 28, 2011. Accepted June 30, 2011. $\ ^* Corresponding author.$

 $[\]bigodot$ 2011 Korean SIGCAM and KSCAM.

For $n \in \mathbb{N}$, let $f_n(x) = f(x+n)$ be translation. As well known equation, by (1.1), we have

$$\int_{\mathbb{Z}_p} f(x+n)d\mu_{-1}(x) = (-1)^n \int_{\mathbb{Z}_p} f(x)d\mu_{-1}(x) + 2\sum_{l=0}^{n-1} (-1)^{n-1-l} f(l).$$
(1.2)

The Genocchi numbers are defined by the generating function as follows:

$$\frac{2t}{e^t + 1} = \sum_{n=0}^{\infty} G_n \frac{t^n}{n!}, \text{ see } [3, 4, 11, 12].$$
(1.3)

The Genocchi numbers are defined by the generating function as follows:

$$\frac{2t}{e^t + 1}e^{xt} = \sum_{n=0}^{\infty} G_n(x)\frac{t^n}{n!}, \text{ see } [3, 4, 11, 12].$$
(1.4)

From (1.4), we note that

$$G_n(x) = \sum_{l=0}^n \binom{n}{l} G_l x^{n-l}.$$
(1.5)

From (1.2) and (1.4), for n = 1, we have

$$t \int_{\mathbb{Z}_p} e^{(x+y)t} d\mu_{-1}(y) = \frac{2t}{e^t + 1} e^{xt} = \sum_{n=0}^{\infty} G_n(x) \frac{t^n}{n!}.$$
 (1.6)

By (1.6), we obtain

$$G_0(x) = 0, \quad \int_{\mathbb{Z}_p} (x+y)^n d\mu_{-1}(y) = \frac{G_{n+1}(x)}{n+1}, \text{ for } n \in \mathbb{N}.$$
 (1.7)

As well known definition, Bernstein polynomials of degree n are given by

$$B_{k,n}(x) = \binom{n}{k} x^k (1-x)^{n-k}, \text{ where } x \in [0,1], n, k \in \mathbb{Z}_+.$$
(1.8)

In [1], Kim introduced *p*-adic extension of Bernstein polynomials as follows:

$$B_{k,n}(x) = \binom{n}{k} x^k (1-x)^{n-k}, \text{ where } x \in \mathbb{Z}_p \text{ and } n, k \in \mathbb{Z}_+.$$
(1.9)

In this paper, we investigate some properties for Genocchi numbers and polynomials. By using these properties, we give some interesting identities on Genocchi polynomials and Bernstein polynomials.

2. Some identities on the Bernstein and Genocchi polynomials

From (1.6), we can derive the following recurrence formula for the Genocchi numbers:

$$G_0 = 0, \text{ and } (G+1)^n + G_n = \begin{cases} 2, & \text{if } n = 1, \\ 0, & \text{if } n > 1, \end{cases}$$
(2.1)

with usual convention about replacing G^n by G_n .

By (1.4), we easily get

$$\sum_{n=0}^{\infty} G_n (1-x)(-1)^n \frac{t^n}{n!} = (-1)\frac{2t}{e^t + 1}e^{xt} = (-1)\sum_{n=0}^{\infty} G_n(x)\frac{t^n}{n!}.$$
 (2.2)

By (2.2), we obtain the following theorem.

Theorem 2.1. Let $n \in \mathbb{Z}_+$. Then we have

$$G_n(x) = (-1)^{n-1}G_n(1-x).$$

From (1.7), we note that

$$G_0 = 0, \quad \int_{\mathbb{Z}_p} x^n d\mu_{-1}(x) = \frac{G_{n+1}}{n+1}, \text{ for } n \in \mathbb{N}.$$
 (2.3)

By (2.1), for $n \in \mathbb{N}$ with n > 1, we have

$$G_{n}(2) = (G+1+1)^{n} = \sum_{l=0}^{n} {n \choose l} G_{l}(1)$$

$$= \sum_{l=1}^{n} {n \choose l} G_{l}(1)$$

$$= (nG_{1}(1)) + \sum_{l=2}^{n} {n \choose l} G_{l}(1)$$

$$= 2n - G_{n}(1)$$

$$= 2n + G_{n}.$$

(2.4)

Therefore, by (2.4), we obtain the following theorem.

Theorem 2.2. For $n \in \mathbb{N}$ with n > 1, we have

$$G_n(2) = 2n + G_n.$$

By (2.3) and Theorem 2.2, we obtain the following corollary.

Corollary 2.3. For $n \in \mathbb{N}$ with n > 1, we have

$$\int_{\mathbb{Z}_p} (x+2)^n d\mu_{-1}(x) = 2 + \frac{G_{n+1}}{n+1}.$$

By (1.7), (2.3) and Corollary 2.3, we know that

$$\begin{split} \int_{\mathbb{Z}_p} (1-x)^n d\mu_{-1}(x) &= (-1)^n \int_{\mathbb{Z}_p} (x-1)^n d\mu_{-1}(x) \\ &= (-1)^n \frac{G_{n+1}(-1)}{n+1} \\ &= \frac{G_{n+1}(2)}{n+1} \\ &= \int_{\mathbb{Z}_p} (x+2)^n d\mu_{-1}(x) \\ &= 2 + \frac{G_{n+1}}{n+1} \\ &= 2 + \int_{\mathbb{Z}_p} x^n d\mu_{-1}(x). \end{split}$$

Therefore, we have the following theorem.

.

Theorem 2.4. For $n \in \mathbb{N}$ with n > 1, we have

$$\int_{\mathbb{Z}_p} (1-x)^n d\mu_{-1}(x) = 2 + \int_{\mathbb{Z}_p} x^n d\mu_{-1}(x).$$

In (1.9), we take the twisted fermionic *p*-adic invariant integral on \mathbb{Z}_p for one Bernstein polynomials as follows:

$$\int_{\mathbb{Z}_p} B_{k,n}(x) d\mu_{-1}(x) = \binom{n}{k} \sum_{l=0}^{n-k} \binom{n-k}{l} (-1)^{n-k-l} \int_{\mathbb{Z}_p} x^{n-l} d\mu_{-1}(x)$$
$$= \binom{n}{k} \sum_{l=0}^{n-k} \binom{n-k}{l} (-1)^{n-k-l} \frac{G_{n-l+1}}{n-l+1}$$
$$= \binom{n}{k} \sum_{l=0}^{n-k} \binom{n-k}{l} (-1)^l \frac{G_{k+l+1}}{k+l+1},$$
(2.5)

where $n, k \in \mathbb{Z}_+$.

From the reflection symmetric properties of Bernstein polynomials, we note that

 $B_{k,n}(x) = B_{n-k,n}(1-x), \text{ where } n, k \in \mathbb{Z}_+ \text{ and } x \in \mathbb{Z}_p.$ (2.6) For $n, k \in \mathbb{Z}_+$ with n > k+1, we have

$$\int_{\mathbb{Z}_p} B_{k,n}(x) d\mu_{-1}(x) = \int_{\mathbb{Z}_p} B_{n-k,n}(1-x) d\mu_{-1}(x)$$
$$= \binom{n}{k} \sum_{l=0}^k \binom{k}{l} (-1)^{k-l} \int_{\mathbb{Z}_p} (1-x)^{n-l} d\mu_{-1}(x)$$
$$= \binom{n}{k} \sum_{l=0}^k \binom{k}{l} (-1)^{k-l} \left(2 + \int_{\mathbb{Z}_p} x^{n-l} d\mu_{-1}(x)\right).$$

Therefore, we have the following theorem.

Theorem 2.5. For $n, k \in \mathbb{Z}_+$ with n > k + 1, we have

$$\int_{\mathbb{Z}_p} B_{k,n}(x) d\mu_{-1}(x) = \binom{n}{k} \sum_{l=0}^k \binom{k}{l} (-1)^{k-l} \left(2 + \frac{G_{n-l+1}}{n-l+1}\right).$$

By (2.5) and Theorem 2.5, we have the following theorem.

Theorem 2.6. Let $n, k \in \mathbb{Z}_+$ with n > k + 1. Then we have

$$\sum_{l=0}^{n-k} \binom{n-k}{l} (-1)^l \frac{G_{k+l+1}}{k+l+1} = \sum_{l=0}^k \binom{k}{l} (-1)^{k-l} \left(2 + \frac{G_{n-l+1}}{n-l+1}\right).$$

Let $n_1, n_2, k \in \mathbb{Z}_+$ with $n_1 + n_2 > 2k + 1$. Then we get

$$\int_{\mathbb{Z}_p} B_{k,n_1}(x) B_{k,n_2}(x) d\mu_{-1}(x)$$

$$= \binom{n_1}{k} \binom{n_2}{k} \sum_{l=0}^{2k} \binom{2k}{l} (-1)^{l+2k} \int_{\mathbb{Z}_p} (1-x)^{n_1+n_2-l} d\mu_{-1}(x)$$

$$= \binom{n_1}{k} \binom{n_2}{k} \sum_{l=0}^{2k} \binom{2k}{l} (-1)^{l+2k} \int_{\mathbb{Z}_p} (x+2)^{n_1+n_2-l} d\mu_{-1}(x)$$

$$= \binom{n_1}{k} \binom{n_2}{k} \sum_{l=0}^{2k} \binom{2k}{l} (-1)^{l+2k} \left(2 + \int_{\mathbb{Z}_p} x^{n_1+n_2-l} d\mu_{-1}(x)\right).$$

Therefore, we obtain the following theorem.

Theorem 2.7. For $n_1, n_2 k \in \mathbb{Z}_+$ with $n_1 + n_2 > 2k + 1$, we have

$$\int_{\mathbb{Z}_p} B_{k,n_1}(x) B_{k,n_2}(x) d\mu_{-1}(x)$$

= $\binom{n_1}{k} \binom{n_2}{k} \sum_{l=0}^{2k} \binom{2k}{l} (-1)^{l+2k} \left(2 + \frac{G_{n_1+n_2-l+1}}{n_1+n_2-l+1}\right)$

By simple calculation, we easily see that

$$\int_{\mathbb{Z}_p} B_{k,n_1}(x) B_{k,n_2}(x) d\mu_{-1}(x)$$

$$= \binom{n_1}{k} \binom{n_2}{k} \sum_{l=0}^{n_1+n_2-2k} (-1)^l \binom{n_1+n_2-2k}{l} \int_{\mathbb{Z}_p} x^{l+2k} d\mu_{-1}(x) \qquad (2.7)$$

$$= \binom{n_1}{k} \binom{n_2}{k} \sum_{l=0}^{n_1+n_2-2k} (-1)^l \binom{n_1+n_2-2k}{l} \frac{G_{l+2k+1}}{l+2k+1},$$

where $n_1, n_2, k \in \mathbb{Z}_+$. Therefore, by (2.7) and Theorem 2.7, we obtain the following theorem.

Theorem 2.8. Let $n_1, n_2, k \in \mathbb{Z}_+$ with $n_1 + n_2 > 2k + 1$. Then we have

$$\sum_{l=0}^{2k} \binom{2k}{l} (-1)^{l+2k} \left(2 + \frac{G_{n_1+n_2-l+1}}{n_1+n_2-l+1}\right)$$
$$= \sum_{l=0}^{n_1+n_2-2k} (-1)^l \binom{n_1+n_2-2k}{l} \frac{G_{l+2k+1}}{l+2k+1}$$

For $n_1, n_2, n_3, k \in \mathbb{Z}_+$ with $n_1 + n_2 + n_3 > 3k + 1$, by the symmetry of Bernstein polynomials, we see that

$$\begin{split} &\int_{\mathbb{Z}_p} B_{k,n_1}(x) B_{k,n_2}(x) B_{k,n_3}(x) d\mu_{-1}(x) \\ &= \binom{n_1}{k} \binom{n_2}{k} \binom{n_3}{k} \sum_{l=0}^{3k} \binom{3k}{l} (-1)^{l+3k} \int_{\mathbb{Z}_p} (1-x)^{n_1+n_2+n_3-l} d\mu_{-1}(x) \\ &= \binom{n_1}{k} \binom{n_2}{k} \binom{n_3}{k} \sum_{l=0}^{3k} \binom{3k}{l} (-1)^{l+3k} \int_{\mathbb{Z}_p} (x+2)^{n_1+n_2+n_3-l} d\mu_{-1}(x) \\ &= \binom{n_1}{k} \binom{n_2}{k} \binom{n_3}{k} \sum_{l=0}^{3k} \binom{3k}{l} (-1)^{l+3k} \left(2 + \int_{\mathbb{Z}_p} x^{n_1+n_2+n_3-l} d\mu_{-1}(x)\right). \end{split}$$

Therefore, we have the following theorem.

Theorem 2.9. For $n_1, n_2, n_2, k \in \mathbb{Z}_+$ with $n_1 + n_2 + n_3 > 3k + 1$, we have

$$\int_{\mathbb{Z}_p} B_{k,n_1}(x) B_{k,n_2}(x) B_{k,n_3}(x) d\mu_{-1}(x)$$

= $\binom{n_1}{k} \binom{n_2}{k} \binom{n_3}{k} \sum_{l=0}^{3k} \binom{3k}{l} (-1)^{l+3k} \left(2 + \frac{G_{n_1+n_2+n_3-l+1}}{n_1+n_2+n_3-l+1}\right).$

In the same manner, multiplication of three Bernstein polynomials can be given by the following relation:

$$\begin{split} &\int_{\mathbb{Z}_p} B_{k,n_1}(x) B_{k,n_2}(x) B_{k,n_3}(x) d\mu_{-1}(x) \\ &= \binom{n_1}{k} \binom{n_2}{k} \binom{n_3}{k} \sum_{l=0}^{n_1+n_2+n_3-3k} (-1)^l \binom{n_1+n_2+n_3-3k}{l} \int_{\mathbb{Z}_p} x^{l+3k} d\mu_{-1}(x) \\ &= \binom{n_1}{k} \binom{n_2}{k} \binom{n_3}{k} \sum_{l=0}^{n_1+n_2+n_3-3k} (-1)^l \binom{n_1+n_2+n_3-3k}{l} \frac{G_{l+3k+1}}{l+3k+1}, \end{split}$$

where $n_1, n_2, n_3, k \in \mathbb{Z}_+$ with $n_1 + n_2 + n_3 > 3k + 1$. Therefore, by Theorem 2.9 we obtain the following theorem.

Theorem 2.10. Let $n_1, n_2, n_3, k \in \mathbb{Z}_+$ with $n_1 + n_2 + n_3 > 3k + 1$. Then we have

$$\sum_{l=0}^{3k} {3k \choose l} (-1)^{l+3k} \left(2 + \frac{G_{n_1+n_2+n_3-l+1}}{n_1+n_2+n_3-l+1} \right)$$
$$= \sum_{l=0}^{n_1+n_2+n_3-3k} (-1)^l {n_1+n_2+n_3-3k \choose l} \frac{G_{l+3k+1}}{l+3k+1}.$$

Using the above theorem and mathematical induction, we have the following theorem.

Theorem 2.11. Let $m \in \mathbb{N}$. For $n_1, n_2, \ldots, n_m, k \in \mathbb{Z}_+$ with $n_1 + \cdots + n_m > mk + 1$, the multiplication of the sequence of Bernstein polynomials $B_{k,n_1}(x), \ldots, B_{k,n_m}(x)$ with different degrees under fermionic p-adic invariant integral on \mathbb{Z}_p can be given as

$$\int_{\mathbb{Z}_p} \left(\prod_{i=1}^m B_{k,n_i}(x) \right) d\mu_{-1}(x) \\ = \left(\prod_{i=1}^m \binom{n_i}{k} \right) \sum_{l=0}^{mk} \binom{mk}{l} (-1)^{l+mk} \left(2 + \frac{G_{n_1+\dots+n_m-l+1}}{n_1+\dots+n_m-l+1} \right).$$

We also easily see that

$$\int_{\mathbb{Z}_p} \left(\prod_{i=1}^m B_{k,n_i}(x) \right) d\mu_{-1}(x)$$

$$= \left(\prod_{i=1}^m \binom{n_i}{k} \right) \sum_{l=0}^{n_1 + \dots + n_m - mk} \binom{n_1 + \dots + n_m - mk}{l} (-1)^l \frac{G_{l+mk+1}}{l+mk+1}.$$
(2.8)

By Theorem 2.11 and (2.8), we have the following corollary.

Corollary 2.12. Let $m \in \mathbb{N}$. For $n_1, n_2, \ldots, n_m, k \in \mathbb{Z}_+$ with $n_1 + \cdots + n_m > mk + 1$, we have

$$\sum_{l=0}^{mk} \binom{mk}{l} (-1)^{l+mk} \left(2 + \frac{G_{n_1+\dots+n_m-l+1}}{n_1+\dots+n_m-l+1} \right)$$
$$= \sum_{l=0}^{n_1+\dots+n_m-mk} \binom{n_1+\dots+n_m-mk}{l} (-1)^l \frac{G_{l+mk+1}}{l+mk+1}.$$

References

- T. Kim, Some identities for the Bernoulli, the Euler and the Genocchi numbers and polynomials, Adv. Stud. Contemp. Math. 20(2010), 23-28.
- 2. T. Kim, On the multiple q-Genocchi numbers and polynomials, J. Inequal. Appl. 2007(2007), Art ID 71452, 8pp.

H. Y. Lee, N. S. Jung, C. S. Ryoo

- T. Kim, Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic integral on Z_p, Russian Journal of Mathematical physics 16(2009), 484-491.
- 4. T. Kim, Note on the Euler numbers and polynomials, Adv. Stud. Contemp. Math. 17(2008), 131-136.
- T.Kim, L.C. Jang, H. Yi, A note on the modified q-Bernstein polynomials, Discrete Dynamics in Nature and Society 2010(2010), Article ID 706483, 12pp.
- Y. Simsek, M. Acikgoz, A new generating function of q-Bernstein-type polynomials and their interpolation function, Abstract and Applied Analysis 2010(2010), Article ID 769095, 12pp.
- L. C. Jang, W.-J. Kim, Y. Simsek, A study on the p-adic integral representation on Z_p associated with Bernstein and Bernoulli polynomials, Advances in Difference Equations 2010(2010), Article ID 163217, 6pp.
- T. Kim, J. Choi, Y. H. Kim, C. S. Ryoo, On the fermionic p-adic integral representation of Bernstein polynomials associated with Euler numbers and polynomials, J. Inequal. Appl. 2010(2010), Article ID 864247, 12pp.
- C. S. Ryoo, On the generalized Barnes type multiple q-Euler polynomials twisted by ramified roots of unity, Proc. Jangjeon Math. Soc. 13(2010), 255-263.
- 10. C. S. Ryoo, Some relations between twisted q-Euler numbers and Bernstein polynomials, to appear in Adv. Stud. Contemp. Math.
- C.S. Ryoo, A numerical computation on the structure of the roots of q-extension of Genocchi polynomials, Applied Mathematics Letters 21(2008), 348-354.
- C.S. Ryoo, Calculating zeros of the twisted Genocchi polynomials, Adv. Stud. Contemp. Math. 17(2008), 147-159.
- Y. Simsek, Generating functions of the twisted Bernoulli numbers and polynomials associated with their interpolation functions, Adv. Stud. Contemp. Math. 16(2008), 251-257.

H. Y. Lee is a graduate student of Hannam University. His research interests are scientific computing, *p*-adic functional analysis and analytic number theory.

Department of Mathematics, Hannam University, Daejeon, 306-791, Korea. e-mail: normaliz1@naver.com

N. S. Jung is a graduate student of Hannam University. Her research interests are scientific computing, analytic number theory and *p*-adic functional analysis.

Department of Mathematics, Hannam University, Daejeon, 306-791, Korea. e-mail: jns4235@nate.com

C. S. Ryoo received Ph.D. degree from Kyushu University. His research interests focus on the numerical verification method, scientific computing and p-adic functional analysis.

Department of Mathematics, Hannam University, Daejeon, 306-791, Korea. e-mail: ryoocs@hnu.kr