A REGULARIZATION INTERIOR POINT METHOD FOR SEMIDEFINITE PROGRAMMING WITH FREE VARIABLES ${ }^{\dagger}$

WANXIANG LIU, CHENGCAI GAO, YIJU WANG*

Abstract

In this paper, we proposed a regularization interior point method for semidefinite programming with free variables which can be taken as an extension of the algorithm for standard semidefinite programming. Since an inexact search direction at each iteration is used, the computation of the designed algorithm is much less compared with the existing solution methods. The convergence analysis of the method is established under weak conditions.

AMS Mathematics Subject Classification : 65H10, 90C22, 90 C 31.
Key words and phrases : semidefinite optimization, free variables, regularization, global convergence.

1. Introduction

Semidefinite program (SDP) is a kind of convex optimization problem which minimizes the inner product of two matrices over an intersection of an affine set and the cone of positive semidefinite matrices, which admits the following standard form

$$
\begin{array}{cl}
\min & C \bullet X \\
\text { s.t. } & \mathcal{A} \bullet X=b \\
& X \succeq 0
\end{array}
$$

where \mathcal{A} is a linear map from $R^{n \times n} \rightarrow R^{m}, X \succeq 0$ means that X is an $n \times$ n positive semi-definite matrix, $C \in R^{n \times n}, b \in R^{m}$, and $C \bullet X=\operatorname{tr}\left(\mathrm{C}^{\top} \mathrm{X}\right)$. Throughout this paper, we assume that \mathcal{A}^{\top} can be written as $\left(\mathcal{A}_{1}, \mathcal{A}_{2}, \cdots, \mathcal{A}_{m}\right)$ such that $\mathcal{A}_{i} \bullet X=b_{i}, \quad i=1,2, \cdots, m$ and matrices $\mathcal{A}_{1}, \mathcal{A}_{2}, \cdots, \mathcal{A}_{m}$ are linearly independent.

Semi-definite programming frequently arises in control theory, structural optimization, graph theory and combinatorial optimization [1, 16]. In past decades,

[^0]SDP was a popular research topic in mathematical programming. Obviously, SDP is a direct generalization of linear programming and the interior point method was successfully extended to SDP whose high efficiency further stimulates the researchers' interest for SDP. A rather comprehensive list of references dealing with feasible interior-point methods for SDP are referred to [15, 17], and that deals with the infeasible interior-point methods for SDP are referred to $[6,7,12,13]$.

Notwithstanding the substantial progress made in recent years, work continues on the numerical methods for the SDP, and one outstanding issue is the case with free variables which usually appears in such as quantum chemistry [18], polynomial optimization [10, 11], and among others. In this paper, we consider the semidefinite programming problem with free variables assuming the following form

$$
\begin{array}{ll}
\min & C \bullet X+g^{\top} z \\
\text { s.t. } & \mathcal{A} \bullet X+G z=b \tag{1}\\
& X \succeq 0
\end{array}
$$

where $G \in \mathcal{R}^{m \times p}, g \in \mathcal{R}^{p}$, and z is a free variable.
For this kind of SDP, we can not directly apply the existing solution methods to solve the problem, and one natural way is to split the free variable vector $z \in \mathcal{R}^{p}$ into the difference of two nonnegative variable vectors to convert problem (1) into a standard SDP as was done in [5]. However, this conversion not only makes the scale of the SDP doubled but also yields some difficulties in computing as the converted SDP may have a continuum of optimal solutions and its dual may have no interior feasible solution. An alternative approach to the problem is to transform it into a standard SDP via eliminating the free variables [5]. Although the scale of the problem is reduced by doing so, the operation is not easy to implement and it may make a SDP problem from sparse to denser and hence may affect the efficiency of the solution method.

In this paper, motivated by the successful application of the regularization technique of Mészáros to linear conic optimization with free variables [9], we design a regularization interior point method for SDP with free variables. Since there are no relax variables are involved in the new reformulation and no tedious preprocess needed in the new algorithm, the designed method is more practical compared with the existing solution methods for SDP with free variables. The convergence of the method is also established under weak conditions.

To end this section, we give some of notations used in the paper. Let $\mathcal{S}_{+}^{n}\left(\mathcal{S}_{++}^{n}\right)$ denote the set of the $n \times n$ positive semidefinite (definite) symmetric matrices. The abbreviation s.p.d. is the shorthand for symmetric positive definite. For $A \in \mathcal{R}^{m \times n}, B \in \mathcal{R}^{k \times l}$, its Kronecker product, denoted by $A \otimes B$, is defined as

$$
\left(\begin{array}{ccc}
a_{11} B & \cdots & a_{1 n} B \\
\vdots & & \vdots \\
a_{m 1} B & \cdots & a_{m n} B
\end{array}\right)
$$

For $A \in \mathcal{R}^{n \times n}, \lambda_{i}(A)$ denotes eigenvalues of A which are arranged in nonincreasing order w.r.t. $i=1,2, \cdots, n$, and $\rho(A)$ denotes the spectrum radius of matrix A. For $A \in \mathcal{R}^{m \times n}$ with rank r, its i-th singular value is denoted by $\sigma_{i}(A)$, and its Euclidean norm and the Frobenius norm are denoted by $\|A\|$ and $\|A\|_{F}$, respectively. Furthermore, we let $\operatorname{vec}(A)$ denote the $m n$-vector obtained by stacking the columns of A from the first to the last.

2. Direction Searching

For problem (1), we can readily establish its Lagrangian dual program [9]

$$
\begin{array}{cl}
\max & b^{\top} y \\
\text { s.t. } & \sum_{i=1}^{m} y_{i} \mathcal{A}_{i}+S=C \tag{2}\\
& G^{\top} y=g \\
& S \succeq 0
\end{array}
$$

and its optimal condition

$$
\begin{align*}
\mathcal{A} \bullet X+G z & =b, \quad X \succeq 0 \\
\sum_{i=1}^{m} y_{i} \mathcal{A}_{i}+S & =C, \quad S \succeq 0 \tag{3}\\
G^{\top} y & =g \\
X S & =0
\end{align*}
$$

which is equivalent to the original problem (1).
It is well known that Newton method is an efficient solution method for solving system of equations. However, the classical Newton method can not be directly applied to solve system (3) due to the nonnegative definiteness constraint of variables X, S. Similar to the interior algorithm for standard SDP [3, 4], we adapt a stepsize rule in the Newton iterative procedure to guarantee that all the iterates remain strictly feasible and meanwhile they are not too close to the boundary. Furthermore, to obtain a longstep in the iterative procedure, we make a bias of the Newton direction to the interior of the feasible region. To be precise, we replace the fourth equation in system (3) by a parameterized equation to obtain the following system of equation

$$
\left\{\begin{array}{l}
\mathcal{A} \bullet X+G z=b, \quad X \succeq 0 \tag{4}\\
\sum_{i=1}^{m} y_{i} \mathcal{A}_{i}+S=C, \quad S \succeq 0 \\
G^{\top} y=g \\
X S=\sigma \mu I
\end{array}\right.
$$

For this system, it can be shown that the parameterized system (4) has a unique solution, denoted by $(X(\mu), z(\mu), y(\mu), S(\mu))$, for each $\mu>0$ under the condition that matrices \mathcal{A}_{i} are linearly independent for $i=1,2, \cdots, m$ and SDP (1) has a strictly feasible interior point [4]. In this sense, we call
$(X(\mu), z(\mu), y(\mu), S(\mu))$ a central path of (1) and (2). Note that for each $\mu>0$, we derive the duality gap

$$
\mu=X(\mu) \bullet S(\mu) / n
$$

Certainly, if $\mu \rightarrow 0$, then the limit of the central path yields a solution for (1) and (2).

For point (X, z, y, S) with $X, S \succ 0$, the Newton direction $(\Delta X, \Delta z, \Delta y, \Delta S)$ of (4) at the current point satisfies

$$
\left\{\begin{array}{l}
\mathcal{A} \bullet \Delta X+G \Delta z=-(\mathcal{A} \bullet X+G z-b) \tag{5}\\
\sum_{i=1}^{m} \Delta y_{i} \mathcal{A}_{i}+\Delta S=-\left(\sum_{i=1}^{m} y_{i} \mathcal{A}_{i}+S-C\right) \\
G^{\top} \Delta y=-\left(G^{\top} y-g\right) \\
X \Delta S+\Delta X S=\sigma \mu I-X S
\end{array}\right.
$$

Obviously, ΔS is symmetric due to the second equation in (5). However, a crucial observation is that ΔX is not necessarily symmetric since the product of two symmetric matrices $X, \Delta S$ may not be symmetric. To make ΔX to be symmetric and hence make $X+\alpha \Delta X$ symmetric for any $\alpha>0$, many researchers have proposed various techniques to symmetrize the fourth equation in the preceding Newton system $[4,6,14,15]$ and a popular one is that proposed by Zhang in [17]

$$
\mathcal{H}_{P}(A)=\frac{1}{2}\left(P A P^{-1}+\left(P A P^{-1}\right)^{\top}\right), \quad \forall A \in \mathcal{R}^{n \times n}
$$

where $P \in \mathcal{R}^{n \times n}$ is a nonsingular matrix. In our algorithm designed below, we take the matrix $P=S^{\frac{1}{2}}$. Then Newton equation (5) becomes

$$
\left\{\begin{array}{l}
\mathcal{A} \bullet \Delta X+G \Delta z=-(\mathcal{A} \bullet X+G z-b) \tag{6}\\
\sum_{i=1}^{m} \Delta y_{i} \mathcal{A}_{i}+\Delta S=-\left(\sum_{i=1}^{m} y_{i} \mathcal{A}_{i}+S-C\right) \\
G^{\top} \Delta y=-\left(G^{\top} y-g\right) \\
\mathcal{H}_{S^{\frac{1}{2}}}(X \Delta S+\Delta X S)=\sigma \mu I-\mathcal{H}_{S^{\frac{1}{2}}}(X S)
\end{array}\right.
$$

To solve this system, we transformed it into the vector version to obtain

$$
\left\{\begin{array}{l}
\mathcal{A v e c}(\Delta X)+G \Delta z=r_{p} \tag{7}\\
\mathcal{A}^{\top} \Delta y+\operatorname{vec}(\Delta S)=\operatorname{vec}\left(R_{d}\right) \\
G^{\top} \Delta y=r_{d} \\
E \operatorname{vec}(\Delta X)+F \operatorname{vec}(\Delta S)=\operatorname{vec}\left(R_{c}\right)
\end{array}\right.
$$

where

$$
\begin{aligned}
& \mathcal{A}^{\top}=\left(\operatorname{vec} \mathcal{A}_{1}, \operatorname{vec} \mathcal{A}_{2}, \cdots, \operatorname{vec} \mathcal{A}_{m}\right) \\
& r_{p}=-(\mathcal{A v e c} X+G z-b), \\
& \operatorname{vec}\left(R_{d}\right)=-\left(\mathcal{A}^{\top} y+\operatorname{vec}(S)-\operatorname{vec}(C)\right), \\
& r_{d}=-\left(G^{\top} y-g\right) \\
& R_{c}=2(\sigma \mu S-S X S) \\
& E=2 S \otimes S, \quad F=S X \otimes I+I \otimes S X
\end{aligned}
$$

For simplicity, we drop the subscript $S^{\frac{1}{2}}$ from $\mathcal{H}_{S^{\frac{1}{2}}}$ from now on. For the current interior iterate ($X_{k}, z_{k}, y_{k}, S_{k}$) of (3), the new iterate ($X_{k+1}, z_{k+1}, y_{k+1}, S_{k+1}$) $\in \mathcal{S}_{++}^{n} \times \mathcal{R}^{p} \times \mathcal{R}^{m} \times \mathcal{S}_{++}^{n}$ is generated as follows

$$
\left\{\begin{array}{l}
X_{k+1}=X_{k}+\alpha_{k} \Delta X_{k} \tag{8}\\
z_{k+1}=z_{k}+\alpha_{k} \Delta z_{k} \\
y_{k+1}=y_{k}+\alpha_{k} \Delta y_{k} \\
S_{k+1}=S_{k}+\alpha_{k} \Delta S_{k}
\end{array}\right.
$$

where $\alpha_{k} \in(0,1]$ is carefully chosen in order that the new iterate satisfies the centrality conditions

$$
\begin{align*}
& \rho\left(\mathcal{H}\left(X_{k+1} S_{k+1}\right)\right) \geq \gamma_{1} \mu_{k+1}, \\
& X_{k+1} \bullet S_{k+1} \geq \max \left\{\gamma_{2}\left\|r_{p}^{k+1}\right\|, \gamma_{3}\left\|\operatorname{vec} R_{d}^{(k+1)}\right\|, \gamma_{4}\left\|r_{d}^{(k+1)}\right\|\right\} \tag{9}
\end{align*}
$$

and the decrease condition of the merit function $X \bullet S$:

$$
\begin{equation*}
X_{k+1} \bullet S_{k+1} \leq\left(1-\alpha_{k}(1-\beta)\right) X_{k} \bullet S_{k} \tag{10}
\end{equation*}
$$

where $\hat{\gamma} \in(0,1), \beta \in(0,1)$, and constants $\gamma_{1}, \gamma_{2}, \gamma_{3}$, and γ_{4} are defined by

$$
\begin{array}{ll}
\gamma_{1}=\min \left\{\hat{\gamma}, \frac{\lambda_{n}\left(\mathcal{H}\left(X_{0} S_{0}\right)\right)}{\mu_{0}}\right\}, & \gamma_{2}=\min \left\{\hat{\gamma}, \frac{X_{0} \bullet S_{0}}{\left\|r_{p}^{(0)}\right\|}\right\}, \tag{11}\\
\gamma_{3}=\frac{X_{0} \bullet S_{0}}{\left\|\operatorname{vec} R_{d}^{(0)}\right\|}, & \gamma_{4}=\min \left\{\hat{\gamma}, \frac{X_{0} \bullet S_{0}}{\left\|r_{d}^{(0)}\right\|}\right\} .
\end{array}
$$

This choice of constants guarantees that the quantity $X_{k} \bullet S_{k}$ is driven to zero, and $\left\|\operatorname{vec}\left(R_{d}^{(k)}\right)\right\|,\left\|r_{p}^{(k)}\right\|,\left\|r_{d}^{(k)}\right\|$ are all pushed to zero due to condition (9).

It should be noted that condition (9) and decrease condition (10) are the generalization of that for standard SDP [2], which are actually the generalization of that for standard linear programming [8].

To solve linear system (7), we reduce system (7) to the following system

$$
\begin{align*}
\mathcal{A} E_{k}^{-1} F_{k} \mathcal{A}^{\top} \Delta y_{k}+G \Delta z_{k} & =r_{p}^{(k)}+\mathcal{A} E_{k}^{-1} F_{k} \operatorname{vec}\left(R_{d}^{(k)}\right)-\mathcal{A} E_{k}^{-1} \operatorname{vec}\left(R_{c}^{(k)}\right) \\
G^{\top} \Delta y_{k} & =r_{d}^{(k)} \tag{12}
\end{align*}
$$

For simplicity, set $M_{k}=\mathcal{A} E_{k}^{-1} F_{k} \mathcal{A}^{\top}$. Now, if the coefficient matrix of the system above is nonsingular, then the linear system (12) can be solved via Cholesky factorization to obtain $\Delta y_{k}, \Delta z_{k}$, and then ΔX_{k}, and ΔS_{k} can be computed via

$$
\begin{align*}
\operatorname{vec}\left(\Delta S_{k}\right) & =\operatorname{vec}\left(R_{d}^{(k)}\right)-\mathcal{A}^{\top} \Delta y \\
\operatorname{vec}\left(\Delta X_{k}\right) & =E_{k}^{-1}\left(\operatorname{vec}\left(R_{c}^{(k)}\right)-F_{k} \operatorname{vec}\left(\Delta S_{k}\right)\right) \tag{13}
\end{align*}
$$

However, the coefficient matrix is not generally nonsingular due to the existence of the free variable z. To handle this case, we apply the Mészáros regularization technique to the system. That is, we introduce a specified $\delta_{k}>0$ into the second equation of system (12) to write it as

$$
\begin{align*}
\mathcal{A} E_{k}^{-1} F_{k} \mathcal{A}^{\top} \Delta y_{k}+G \Delta z_{k} & =r_{p}^{(k)}+\mathcal{A} E_{k}^{-1} F_{k} \operatorname{vec}\left(R_{d}^{(k)}\right)-\mathcal{A} E_{k}^{-1} \operatorname{vec}\left(R_{c}^{(k)}\right) \\
G^{\top} \Delta y_{k}-\delta_{k} \Delta z_{k} & =r_{d}^{(k)} \tag{14}
\end{align*}
$$

To decrease the computation quantity, we only need to calculate an approximated solution to system (14). Here, we let the residual vectors $\bar{r}_{p}^{(k)}, \bar{r}_{d}^{(k)}$ with respect to the two equations satisfy

$$
\begin{align*}
& \left\|\bar{r}_{p}^{(k)}\right\| \leq \eta_{1 k} X_{k} \bullet S_{k} \tag{15}\\
& \left\|\bar{r}_{d}^{(k)}\right\| \leq \eta_{2 k} X_{k} \bullet S_{k}
\end{align*}
$$

where $\eta_{1 k}, \eta_{2 k} \in(0,1)$.

3. Algorithm and Convergence

Based on the analysis in the previous section, we give the description of our designed method.

Algorithm 3.1

Initial Step: Let $\sigma_{0} \in(0,1), \varepsilon>0, \hat{\gamma} \in(0,1), \beta \in(0,1), \eta_{10}, \eta_{20} \in(0,1), \delta_{0}>$ $0, X_{0}, S_{0} \in \mathcal{S}_{++}^{n}, z_{0} \in \mathcal{R}^{p}, y_{0} \in \mathcal{R}^{m}$ be given, compute $\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}$ from (11) and let $k=0$.

Iterative Step: If $X_{k} \bullet S_{k} \leq \varepsilon$, stop; otherwise, set Accept $=0$ and go to the following while loop.
while Accept $=0$ do
solve system (14) approximately with condition (15) to obtain $\left(\Delta y_{k}, \Delta z_{k}\right)$. Then compute ($\Delta X_{k}, \Delta S_{k}$) from (13).
if $\delta_{k}\left\|\Delta z_{k}\right\| \leq \frac{1}{2} \frac{\sigma_{k}}{\gamma_{4}} X_{k} \bullet S_{k}$, then set Accept $=1$; otherwise set $\delta_{k}=\frac{1}{2} \frac{\sigma_{k}}{\gamma_{4}} \frac{X_{k} \bullet S_{k}}{2\left\|\Delta z_{k}\right\|}$
end if
end while
Take step $\alpha_{k}>0$ such that $\left(X_{k+1}, z_{k+1}, y_{k+1}, S_{k+1}\right)$ satisfy conditions (9) and (10).

Set $\delta_{k+1}=\frac{1}{2} \frac{\sigma_{k}}{\gamma_{4}} \frac{X_{k+1} \bullet S_{k+1}}{\left\|\Delta z_{k}\right\|}$.
Let $k=k+1$ and goto the next iteration.
Remark 3.1. The main difference of the designed algorithm with the interior algorithm for standard SDP designed in [2] lies in that we take an δ_{k}-update strategy into the iterative procedure to make $\delta_{k}\left\|\Delta z_{k}\right\| \leq \frac{1}{2} \frac{\sigma_{k}}{\gamma_{4}} X_{k} \bullet S_{k}$ at each step which guarantees the generated sequence converges to the solution of our concerned problem. In the while-loop procedure, δ_{k} is monotonically decreased by at least factor 0.5 to make the while-loop terminate in finite steps.

To establish the convergence of the algorithm, we first explore some properties of method for SDP.

Lemma 3.1 ([2], Lemma 4.1). Let matrix P be nonsingular, and matrix A, $B \in \mathcal{S}^{n}$, then $|A \bullet B| \leq n\left\|\mathcal{H}_{p}(A B)\right\|_{F}$.

The following lemma tells us that if $\left(X_{k}, z_{k}, y_{k}, S_{k}\right)$ satisfy (9)-(10), then there exists $\alpha_{k} \in(0,1]$ such that, for all $\alpha \in\left[0, \alpha_{k}\right],\left(X_{k}(\alpha), z_{k}(\alpha), y_{k}(\alpha), S_{k}(\alpha)\right)$
satisfy

$$
\left\{\begin{array}{l}
\rho\left(\mathcal{H}\left(X_{k}(\alpha) S_{k}(\alpha)\right)\right) \geq \gamma_{1} \mu_{k}(\alpha) \tag{16}\\
X_{k}(\alpha) \bullet S_{k}(\alpha) \leq(1-\alpha(1-\beta)) X_{k} \bullet S_{k} \\
X_{k}(\alpha) \bullet S_{k}(\alpha) \geq \max \left\{\gamma_{2}\left\|r_{(p)}^{k}(\alpha)\right\|, \gamma_{3}\left\|\operatorname{vec}\left(R_{d}^{(k)}(\alpha)\right)\right\|\right\} \\
X_{k}(\alpha) \bullet S_{k}(\alpha) \geq \gamma_{4}\left\|r_{d}^{(k)}(\alpha)\right\|
\end{array}\right.
$$

where

$$
\begin{aligned}
& X_{k}(\alpha)=X_{k}+\alpha \Delta X \\
& z_{k}(\alpha)=z_{k}+\alpha \Delta z \\
& S_{k}(\alpha)=X_{k}+\alpha \Delta S \\
& y_{k}(\alpha)=y_{k}+\alpha \Delta y \\
& r_{p}^{(k)}(\alpha)=b-\mathcal{A} \operatorname{vec}\left(X_{k}(\alpha)\right)-G z_{k}(\alpha) \\
& \operatorname{vec}\left(R_{d}^{(k)}\right)=\operatorname{vec}(C)-\operatorname{vec}\left(S_{k}(\alpha)\right)-\mathcal{A}^{\top} y_{k}(\alpha), \\
& r_{d}^{(k)}(\alpha)=g-G^{\top} y_{k}(\alpha) .
\end{aligned}
$$

Lemma 3.2. Assume iterate ($X_{k}, z_{k}, y_{k}, S_{k}$) satisfies condition (9)-(10) and $\left(\Delta X_{k}, \Delta z_{k}, \Delta y_{k}, \Delta S_{k}\right)$ is the searching directed generated by Algorithm 3.1 at each iteration. Then, under condition (15) and

$$
\begin{equation*}
\sigma_{k}-\gamma_{2} \eta_{1 k}>0, \quad \frac{\sigma_{k}}{2}-\gamma_{4} \eta_{2 k}>0, \quad \beta-\sigma_{k}>0 \tag{17}
\end{equation*}
$$

there exists $\hat{\alpha_{k}} \in(0,1]$ such that, for all $\alpha \in\left(0, \hat{\alpha_{k}}\right]$, (16) holds.
Proof. For simplicity, we omit the iteration index k in the proof. Since the proof of first three inequalities in (16) can follow from that of Proposition 4.1 in [2], therefore, we only show that there exists $\hat{\alpha_{4}}$ such that for all $\alpha \in\left(0, \hat{\alpha_{4}}\right]$ the last inequality of (16) holds.

Taking into account that $\left\|\bar{r}_{d}\right\| \leq \eta_{2} X \bullet S, X \bullet S \geq \gamma_{4}\left\|r_{d}\right\|$ and the regularization condition $\delta\|\Delta z\| \leq \frac{1}{2} \frac{\sigma}{\gamma_{4}} X \bullet S$, we obtain

$$
\begin{aligned}
& X(\alpha) \bullet S(\alpha)-\gamma_{4}\left\|g-G^{\top} y(\alpha)\right\| \\
= & (1-\alpha+\alpha \sigma) X \bullet S+\alpha^{2} \Delta X \bullet \Delta S-\gamma_{4}\left\|g-G^{\top} y-\alpha G^{\top} \Delta y\right\| \\
= & (1-\alpha+\alpha \sigma) X \bullet S+\alpha^{2} \Delta X \bullet \Delta S-\gamma_{4} \| r_{d}-\alpha\left(\delta \Delta z+r_{d}+\bar{r}_{d} \|\right. \\
= & (1-\alpha+\alpha \sigma) X \bullet S+\alpha^{2} \Delta X \bullet \Delta S-\gamma_{4}\left\|(1-\alpha) r_{d}-\alpha \bar{r}_{d}-\alpha \delta \Delta z\right\| \\
\geq & (1-\alpha+\alpha \sigma) X \bullet S+\alpha^{2} \Delta X \bullet \Delta S-(1-\alpha) \gamma_{4}\left\|r_{d}\right\|-\alpha \gamma_{4}\left\|\bar{r}_{d}\right\|-\gamma_{4} \alpha \delta\|\Delta z\| \\
\geq & \alpha \sigma X \bullet S+\alpha^{2} \Delta X \bullet \Delta S-\alpha \gamma_{4} \eta_{2} X \bullet S-\frac{\alpha \sigma}{2} X \bullet S \\
= & \alpha\left(\sigma / 2-\gamma_{4} \eta_{2}\right) X \bullet S+\alpha^{2} \Delta X \bullet \Delta S \\
\geq & \alpha\left(\sigma / 2-\gamma_{4} \eta_{2}\right) X \bullet S-\alpha^{2}|\Delta X \bullet \Delta S| .
\end{aligned}
$$

Since $\frac{\sigma}{2}-\gamma_{4} \eta_{2}>0$ by the hypothesis, it follows that the fourth inequality of (16) holds for $\alpha \in\left(0, \hat{\alpha_{4}}\right]$ with $\hat{\alpha_{4}}=\frac{\left(\sigma / 2-\gamma_{4} \eta_{2}\right) X \bullet S}{|\Delta X \Delta S|}$.

Consequently, the desired result follows if we take

$$
\begin{equation*}
\hat{\alpha}_{k}=\min \{1, \kappa X \bullet S\}, \tag{18}
\end{equation*}
$$

where $\kappa=\min \left\{\frac{1-\gamma_{1}}{1+\gamma_{1}}, \frac{\sigma}{n\|\mathcal{H}(\Delta X \Delta S)\|_{F}}, \frac{\sigma-\gamma_{2} \eta_{4}}{|\Delta X \Delta S|}, \frac{\sigma}{|\Delta X \Delta S|}, \frac{\sigma / 2-\gamma_{4} \eta_{2}}{|\Delta X \Delta S|}, \frac{\beta-\sigma}{|\Delta X \Delta S|}\right\}$.
The following lemma is taken from Proposition 4.2 in [2], which ensures that the matrices $X_{k}(\alpha)$ and $S_{k}(\alpha)$ with $\alpha \in\left[0, \hat{\alpha}_{k}\right]$ are s.p.d.
Lemma 3.3. Assume that the hypotheses of Lemma 3.1 are satisfied and let $\hat{\alpha}_{k}$ be defined as in (18). Then for all $\alpha \in\left[0, \hat{\alpha_{k}}\right]$ matrices $X_{k}(\alpha)$ and $S_{k}(\alpha)$ are all s.p.d., unless $\hat{\alpha_{k}}=1$ and $X_{k}(1) \bullet S_{k}(1)=0$ in which case $\left(X_{k}(1), z_{k}(1), y_{k}(1), S_{k}(1)\right)$ is a solution to (3).
Lemma 3.4 ([17], Lemma 4.2). If S_{k} and S_{k+1} are s.p.d., then

$$
\lambda_{n}\left(\mathcal{H}_{S_{k}^{1 / 2}}\left(X_{k+1} S_{k+1}\right)\right) \leq \rho\left(\mathcal{H}_{S_{k+1}^{1 / 2}}\left(X_{k+1} S_{k+1}\right)\right)
$$

Based on the previous conclusions, we deduce that the new iterate (X_{k+1}, z_{k+1}, y_{k+1}, S_{k+1}) satisfies conditions (9) and (10). Hence Algorithm 3.1 is well defined.

Before proceeding on the analysis of the behavior of the sequence $\left\{X_{k} \bullet S_{k}\right\}$, we give some observations whose proofs can be found in [2].
Lemma 3.5 ([17], Proposition 2.3). The matrix $\hat{S}_{k}=F_{k} E_{k}^{\top}$ is s.p.d. and can be written as

$$
\hat{S}_{k}=E_{k}^{1 / 2} \hat{F}_{k} E_{k}^{1 / 2}
$$

where

$$
\hat{F}_{k}=E_{k}^{-1 / 2} F_{k} E_{k}^{1 / 2}=S_{k}^{1 / 2} X_{k} S_{k}^{1 / 2} \otimes I+I \otimes S_{k}^{1 / 2} X_{k} S_{k}^{1 / 2}
$$

which is s.p.d.
Remark 3.2. Matrices $X_{k} S_{k}, S_{k} X_{k}, X_{k}^{1 / 2} S_{k} X_{k}^{1 / 2}$ and $S_{k}^{1 / 2} X_{k} S_{k}^{1 / 2}$ are all similar. Moreover, since

$$
\mathcal{H}\left(X_{k} S_{k}\right)=\frac{1}{2}\left(S_{k}^{1 / 2} X_{k} S_{k} S_{k}^{-1 / 2}+\left(S_{k}^{1 / 2} X_{k} S_{k} S_{k}^{-1 / 2}\right)^{\top}\right)=S_{k}^{1 / 2} X_{k} S_{k}^{1 / 2}
$$

matrices $\mathcal{H}\left(X_{k} S_{k}\right)$ and $X_{k} S_{k}$ are similar. If we denote the eigenvalues of these matrices as $\lambda_{i}, i=1, \cdots, n$, then from (g) of Lemma 6.1 in [2], the eigenvalues of F_{k} and \hat{F}_{k} are given by $\lambda_{i}^{k}+\lambda_{j}^{k}$, for $i, j=1, \cdots, n$.

$$
\begin{gathered}
\text { Set } D_{k}={\hat{S_{k}}}^{-1 / 2} F_{k}={\hat{S_{k}}}^{1 / 2} E_{k}^{-\top} \text {. Then } D_{k}^{-\top}={\hat{S_{k}}}^{-1 / 2} E_{k}={\hat{S_{k}}}^{1 / 2} F_{k}^{-\top} \text { and } \\
D_{k}^{\top} D_{k}=\left({\hat{S_{k}}}^{-1 / 2} F_{k}\right)^{\top}{\hat{S_{k}}}^{1 / 2} E_{k}^{-\top}=F_{k}^{\top}\left({\hat{S_{k}}}^{-1 / 2}\right)^{\top} \hat{S}_{k}^{1 / 2} E_{k}^{-\top}=F_{k}^{\top} E_{k}^{-\top} .
\end{gathered}
$$

The symmetry of $E_{k}^{-1} F_{k}$ yields

$$
D_{k}^{\top} D_{k}=E_{k}^{-1} F_{k}
$$

Furthermore, from Lemma 3.3 in [17], one has

$$
\begin{equation*}
\left\|\mathcal{H}\left(\Delta X_{k} \Delta S_{k}\right)\right\|_{F} \leq \frac{1}{2} \sqrt{\frac{\lambda_{1}^{k}}{\lambda_{n}^{k}}}\left(\left\|D_{k}^{-\top} \operatorname{vec}\left(\Delta X_{k}\right)\right\|^{2}+\left\|D_{k} \operatorname{vec}\left(\Delta S_{k}\right)\right\|^{2}\right) \tag{19}
\end{equation*}
$$

and

$$
\begin{align*}
\left|\Delta X_{k} \bullet \Delta S_{k}\right| & \leq\left\|D_{k}^{-\top} \operatorname{vec}\left(\Delta X_{k}\right)\right\|\left\|D_{k} \operatorname{vec}\left(\Delta S_{k}\right)\right\| \\
& \leq \frac{1}{2}\left(\left\|D_{k}^{-\top} \operatorname{vec}\left(\Delta X_{k}\right)\right\|^{2}+\left\|D_{k} \operatorname{vec}\left(\Delta S_{k}\right)\right\|^{2}\right) . \tag{20}
\end{align*}
$$

In order to prove the global convergence of the method, we further need the following assumption.
Assumption 3.1. The sequence $\left\{X_{k} \bullet S_{k}\right\}$ is bounded, i.e. there exists a constant c_{1} such that $\max \left\{\left\|X_{k}\right\|,\left\|S_{k}\right\|\right\} \leq c_{1}$ for every $k>0$.

Next, we will show the boundedness of $\left\|E_{k}^{-1} F_{k}\right\|,\left\|M_{k}\right\|$ and $\left\|\mathcal{H}\left(\Delta X_{k} \Delta S_{k}\right)\right\|_{F}$, and the existence of $\bar{\alpha} \in(0,1)$ such that for every $k, \hat{\alpha_{k}} \geq \bar{\alpha}$.

In fact, from (a) and (f) of Lemma 6.1 in [2], one has

$$
\begin{aligned}
& \left\|E_{k}\right\|=2\left\|S_{k} \otimes S_{k}\right\|=2\left\|S_{k}\right\|^{2} \leq 2 c_{1}^{2} \\
& \left\|E_{k}^{-1}\right\|=\frac{1}{2}\left\|S_{k}^{-1} \otimes S_{k}^{-1}\right\|=\frac{1}{2}\left\|S_{k}^{-1}\right\|^{2}
\end{aligned}
$$

Thus, from Propositions 4.3, 4.4, 4.5 in [2], we obtain the following conclusion.
Proposition 3.1. Let Assumption 3.1 hold and $\left(X_{k}, z_{k}, y_{k}, S_{k}\right)$ be the generated sequence by Algorithm 3.1. Then the followings hold:
(1) $\left\|E_{k}^{-1} F_{k}\right\| \leq \frac{c_{1}^{2} n}{\gamma_{1} X_{k} \bullet S_{k}}$,
(2) $\left\|\left(E_{k}^{-1} F_{k}\right)^{-1}\right\| \leq \frac{c_{1}^{2} n}{\gamma_{1} X_{k} \bullet S_{k}}$,
(3) $\left\|M_{k}^{-1}\right\| \leq \frac{c_{1}^{2} n}{\gamma_{1} X_{k} \bullet S_{k} \sigma_{m}^{2}(A)}$,
(4) $\left\|S_{k}^{-1}\right\| \leq \frac{c_{1}^{2} n \sqrt{n}}{\gamma_{1} X_{k} \bullet S_{k}}$.

Proposition 3.2. Let Assumption 3.1 hold and $\left\{X_{k}, z_{k}, y_{k}, S_{k}\right\}$ be the sequence generated by Algorithm 3.1. If $X_{k} \bullet S_{k} \geq \tilde{\varepsilon}$ for some $\tilde{\varepsilon}>0$ and all k, then there exists a constant $\omega>0$ such that $\left\|\mathcal{H}\left(\Delta X_{k} \Delta S_{k}\right)\right\|_{F} \leq \omega$ for all k.

Proof. Here we omit the iteration index k in the following proof.
From the proof of Proposition 4.6 in [2], we have

$$
\begin{equation*}
\left\|D^{-\top} \operatorname{vec}(\Delta X)\right\| \leq\left\|D \mathcal{A}^{\top} \Delta y\right\|+\left\|D \operatorname{vec}\left(R_{d}\right)\right\|+2 \sigma \mu\left\|\hat{S}^{-1 / 2} \operatorname{vec}(S)\right\|+\left\|D^{-\top} \operatorname{vec}(X)\right\| \tag{21}
\end{equation*}
$$

$$
\begin{gather*}
\|D \operatorname{vec}(\Delta S)\| \leq\left\|D \operatorname{vec}\left(R_{d}\right)\right\|+\left\|D \mathcal{A}^{\top} \Delta y\right\| \tag{22}\\
2 \sigma \mu\left\|\hat{S}^{-1 / 2} \operatorname{vec}(S)\right\| \leq \frac{\sigma c_{1} n^{3 / 4}}{\gamma_{1}} \tag{23}\\
\left\|D \operatorname{vec}\left(R_{d}\right)\right\| \leq \frac{c_{1} \sqrt{n X \bullet S}}{\sqrt{\gamma_{1} X_{0} \bullet S_{0}}}\left\|\operatorname{vec}\left(R_{d}^{(0)}\right)\right\| \tag{24}\\
\left\|D^{-\top} \operatorname{vec}(X)\right\| \leq \frac{c_{1}^{2} n}{\sqrt{\gamma_{1} X \bullet S}} \tag{25}
\end{gather*}
$$

As for term $\left\|D \mathcal{A}^{\top} \Delta y\right\|$, it holds that

$$
\begin{equation*}
\left\|D \mathcal{A}^{\top} \Delta y\right\|^{2}=\Delta y^{\top} \mathcal{A} D^{\top} D \mathcal{A}^{\top} \Delta y=\Delta y^{\top} \mathcal{A} E^{-1} F \mathcal{A}^{\top} \Delta y \leq\|\Delta y\|\|M \Delta y\| . \tag{26}
\end{equation*}
$$

Since the term $r_{p}=b-\mathcal{A v e c}(X)-G z$ and iterate $(X+\Delta X, z+\Delta z, y+\Delta y, S+\Delta S)$ is feasible, it holds that

$$
\begin{aligned}
M \Delta y= & r_{p}-\mathcal{A} E^{-1} \operatorname{vec}\left(R_{c}\right)+\mathcal{A} E^{-1} F \operatorname{vec}\left(R_{d}\right)+\bar{r}_{p}-G \Delta z \\
= & b-\mathcal{A} \operatorname{vec}(X)-G z-\mathcal{A} E^{-1} \operatorname{vec}(2(\sigma \mu S-S X S)) \\
& +\mathcal{A} E^{-1} F \operatorname{vec}\left(R_{d}\right)+\bar{r}_{p}-G \Delta z \\
= & b-\mathcal{A} \operatorname{vec}(X)-G(z+\Delta z)-\sigma \mu \mathcal{A} \operatorname{vec}\left(S^{-1}\right) \\
& +\mathcal{A v e c}(X)+\mathcal{A} E^{-1} F \operatorname{vec}\left(R_{d}\right)+\bar{r}_{p} \\
= & b-G(z+\Delta z)-\sigma \mu \mathcal{A} \operatorname{vec}\left(S^{-1}\right)+\mathcal{A} E^{-1} F \operatorname{vec}\left(R_{d}\right)+\bar{r}_{p} \\
= & \mathcal{A} \operatorname{vec}(X+\Delta x)-\sigma \mu \mathcal{A} \operatorname{vec}\left(S^{-1}\right)+\mathcal{A} E^{-1} F \operatorname{vec}\left(R_{d}\right)+\bar{r}_{p} .
\end{aligned}
$$

Thus, combining (15) with inequalities

$$
\mu_{k+1} \geq \prod_{i=1}^{k}\left(1-\alpha_{i}\right) \mu_{k}, \quad R_{d}^{(k+1)}=\left(1-\alpha_{k}\right) R_{d}^{(k-1)}=\prod_{i=1}^{k}\left(1-\alpha_{i}\right) R_{d}^{(0)}
$$

and (2),(4) in Proposition 3.1 yields

$$
\begin{align*}
\|M \Delta y\|= & \left\|\mathcal{A v e c}(X+\Delta x)-\sigma \mu \mathcal{A} \operatorname{vec}\left(S^{-1}\right)+\mathcal{A} E^{-1} F \operatorname{vec}\left(R_{d}\right)+\bar{r}_{p}\right\| \\
\leq & \sigma_{1}(\mathcal{A})\|\operatorname{vec}(X+\Delta x)\|+\sigma \mu \sigma_{1}(\mathcal{A})\left\|\operatorname{vec}\left(S^{-1}\right)\right\| \\
& +\sigma_{1}(\mathcal{A})\left\|E^{-1} F\right\|\left\|\operatorname{vec}\left(R_{d}\right)\right\|+\left\|\bar{r}_{p}\right\| \tag{27}\\
\leq & \sigma_{1}(\mathcal{A}) \sqrt{n} c_{1}+\sigma_{1}(\mathcal{A}) \frac{c_{1}^{2} n}{\gamma_{1}} \frac{\left\|\operatorname{vec}\left(R_{d}^{(0)}\right)\right\|}{X_{0} \bullet S_{0}}+\sigma \sigma_{1}(\mathcal{A}) \frac{c_{1} \sqrt{n}}{\gamma_{1}}+\eta X \bullet S .
\end{align*}
$$

Thus, by (3) of Proposition 3.1, we get

$$
\begin{equation*}
\|\Delta y\| \leq \frac{c_{1}^{2} n \sigma_{1}(A)}{\gamma_{1} X \bullet S \sigma_{m}(\mathcal{A})}\left(\sqrt{n} c_{1}+\frac{c_{1}^{2} n}{\gamma_{1}} \frac{\left\|\operatorname{vec}\left(R_{d}^{(0)}\right)\right\|}{X_{0} \bullet S_{0}}+\sigma \frac{c_{1} \sqrt{n}}{\gamma_{1}}\right)+\eta \frac{c_{1}^{2} n}{\gamma_{1} \sigma_{m}^{2}(\mathcal{A})} . \tag{28}
\end{equation*}
$$

Summarizing (19), inequality $\sqrt{\frac{\lambda_{1}}{\lambda_{n}}} \leq \sqrt{\frac{n}{\gamma_{1}}}$ and (21)-(28) yields that there exists constant $\omega>0$ such that $\|\mathcal{H}(\Delta X \Delta S)\|_{F} \leq \omega$.

Remark 3.3. From (18),(19), (20) and Proposition 3.2, we can show that there exists constant $\bar{\alpha} \in(0,1)$ independent of k , such that $\hat{\alpha_{k}} \geq \bar{\alpha}$.

With these conclusions at hand, we are now at the position to state our main result in this section.

Theorem 3.1. Let Assumption 3.1 hold and constants $\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}$ be defined by in (11). Assume that constant β and the parameters $\eta_{1 k}, \eta_{2 k}$ and σ_{k} are such that $\beta-\sigma_{k}>\theta_{1}>0$ and $\sigma_{k}-\gamma_{2} \eta_{1 k}>\theta_{2}>0, \quad \frac{\sigma_{k}}{2}-\gamma_{4} \eta_{2 k}>\theta_{3}>0, \forall k>0$, and assume σ_{k} is bounded away from zero whenever $X_{k} \bullet S_{k} \rightarrow 0$. Then the sequence $\left\{X_{k} \bullet S_{k}\right\}$ generated by Algorithm 3.1 with $\varepsilon=0$ converges to 0 .

Proof. Since sequence $\left\{X_{k} \bullet S_{k}\right\}$ is monotonically decreasing and bounded below from zero, therefore, it is convergent.

Now, we prove the conclusion by reductio ad absurdum. Presuppose that $X_{k} \bullet S_{k} \rightarrow \bar{\varepsilon}>0$. From assumption, it follows that there exists $\bar{\sigma}$ such that $\sigma_{k} \geq \bar{\sigma}$ for all k. From Lemma 3.2, we have

$$
\begin{equation*}
X_{k+1} \bullet S_{k+1} \leq\left(1-\hat{\alpha_{k}}(1-\beta)\right) X_{k} \bullet S_{k} \tag{29}
\end{equation*}
$$

with $\hat{\alpha_{k}}$ being given by (18). Furthermore, by the assumption and Remark 3.2, it follows that $\hat{\alpha_{k}} \geq \bar{\alpha}$, where

$$
\bar{\alpha}=\min \left\{1, \frac{\bar{\varepsilon}}{n \omega} \min \left\{\frac{1-\gamma_{1}}{1+\gamma_{1}} \bar{\sigma}, \theta_{1}, \theta_{2}, \theta_{3}\right\}\right\} .
$$

Then $\hat{\alpha_{k}}$ is bounded away from zero, and this along with (29) implies that $X_{k} \bullet S_{k} \rightarrow 0$, as $k \rightarrow \infty$. Thus, we arrive at a contradiction, this completes the proof.

References

1. F. Alizadeh, Interior-point methods in Semidefinite Programming with applications to combiatorial optimization, SIAM J. Optim., 5 (1995),13-51.
2. S. Bellavia, S. Pieraccini, Convergence analysis of an inexact infeasible interior point method for semidefinite programming, Comput. Optim. Appl, 29 (2004),289-313.
3. C. Helmberg, Semidefinite Programming fo Constrained Optimization, Konrad-ZuseZentrum, für Informationstechnik Berlin, 2000.
4. E. De. Klerk, Aspects of Semidefinite Programming: Interior Point Algorithms and Selected Applications, Kluwer Academic Publishers, Dordrecht. The Netherland,2002.
5. K. Kobayashi, K. Nakata, M. Kojima, A conversition of an SDP having free variables into the standard form SDP, Comput. Optim. Appl. 36 (2007), 289-307.
6. M. Kojima, S. Shindoh, S. Hara, Interior-point methods for the monotone semidefinite linear complementarity problem in symmetric matrics, SIAM J. Optim., 7 (1997), 86-125.
7. M. Kojima, M. Shida, S. Shindoh, Local convergence of predictor-corrector infeasible interior-point algorithms for SDPs and SDLCPs, Math. Prog. 80, (1998), 129-160.
8. J. Korzak, ,Convergence analysis of inexact infeasible-interior-point algorithms for solving linear programming problems, SIAM J. Optim. 11 (2000), 133-148.
9. F. A. Miguel, B. Samuel, On handling free variables in interior-point methods for conic linear optimization, SIAM J. Optim., 18 (2007), 1310-1325.
10. P. A. Parrilo, Semidefinite programming relaxations for semialgebraic problems, Math. Prog. 96 (2003), 293-320.
11. G. Pataki, S. Schmieta, The DIMACS Library of Semidefinite-Quadratic-Linear programs, Computational Optimizational Research Center, Columbia University, New York, NY, USA, 1999.
12. F. A. Potra, R. Sheng, A superlinearly convergent primal-dual infeasible-interior-point algorithm for semidefinite programming, SIAM J. Optim., 8 (1998), 1007-1028.
13. F. A. Potra, R. Sheng, Superlinear convergence of interior-point algorithms for semidefinite programming, J. Optim. Theory Appl. 99 (1998), 103-119.
14. F. A. Potra, S. Wright, Interior-point methods, J. Comput. Appl. Math., 124 (2000), 281-302.
15. M. Todd, Semidefinite optimization, Acta Numerica, 10 (2001),515-560.
16. L. Vandenberghe, S. Boyd, Semidefinte programming, SIAM Review, 38 (1996),49-95.
17. Y. Zhang, On extending some primal-dual interior-point algorithms from linear programming to semidefinite programming, SIAM J. Optim. 8 (1998),365-386.
18. Z. Zhao, B. J. Braams, M. Fukuda, M. L. Overton, and J. K. Percus, The reduced density matrix method for electronic structure calculations and the role of three-index representability, J. Chem. Phys. 120(2004), 261-282.
19. C. Baiocchi and A. Capelo, Variational and Quasi Variational Inequalities, J. Wiley and Sons, New York, 1984.
20. D. Chan and J.S. Pang, The generalized quasi variational inequality problems, Math. Oper. Research 7 (1982), 211-222.
21. C. Belly, Variational and Quasi Variational Inequalities, J. Appl.Math. and Computing 6(1999), 234-266.
22. D. Pang, The generalized quasi variational inequality problems, J. Appl.Math. and Computing 8(2002), 123-245.

Wanxiang Liu received M.Sc. from Qufu Normal University in 2010. His research interests include numerical optimization and computation.
School of Managemen Science, Qufu Normal University, Rizhao Shandong, 276800, China. e-mail: liuxiangzhangchao@163.com.

Chengcai Gao received M.Sc. from Qufu Normal University in 2010. His research interests include numerical optimization and computation.
School of Managemen Science, Qufu Normal University, Rizhao Shandong, 276800, China. e-mail: gchengcai@163.com

Yiju Wang received M.Sc. from Qufu Normal University, and Ph.D. from Academy of Mathematics and Systems Sciences, Chinese Academy of Science. He is currently a professor at Qufu Normal University since 1993. His research interests are numerical Optimization.
School of Managemen Science, Qufu Normal University, Rizhao Shandong, 276800, China.
e-mail: wang-yiju@163.com

[^0]: Received November 20, 2010. Revised January 31, 2011. Accepted February 7, 2011. ${ }^{*}$ Corresponding author. ${ }^{\dagger}$ This work was supported by Shandong Provincial Postgraduate Education Program (SDYY10067).
 (C) 2011 Korean SIGCAM and KSCAM.

