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A REGULARIZATION INTERIOR POINT METHOD FOR

SEMIDEFINITE PROGRAMMING WITH FREE VARIABLES†

WANXIANG LIU, CHENGCAI GAO, YIJU WANG∗

Abstract. In this paper, we proposed a regularization interior point method
for semidefinite programming with free variables which can be taken as an
extension of the algorithm for standard semidefinite programming. Since
an inexact search direction at each iteration is used, the computation of
the designed algorithm is much less compared with the existing solution
methods. The convergence analysis of the method is established under
weak conditions.
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1. Introduction

Semidefinite program (SDP) is a kind of convex optimization problem which
minimizes the inner product of two matrices over an intersection of an affine
set and the cone of positive semidefinite matrices, which admits the following
standard form

min C •X
s.t. A •X = b

X º 0

where A is a linear map from Rn×n → Rm, X º 0 means that X is an n ×
n positive semi-definite matrix, C ∈ Rn×n, b ∈ Rm, and C • X = tr(C>X).
Throughout this paper, we assume that A> can be written as (A1,A2, · · · ,Am)
such thatAi•X = bi, i = 1, 2, · · · ,m and matricesA1,A2, · · · ,Am are linearly
independent.

Semi-definite programming frequently arises in control theory, structural opti-
mization, graph theory and combinatorial optimization [1, 16]. In past decades,
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SDP was a popular research topic in mathematical programming. Obviously,
SDP is a direct generalization of linear programming and the interior point
method was successfully extended to SDP whose high efficiency further stimu-
lates the researchers’ interest for SDP. A rather comprehensive list of references
dealing with feasible interior-point methods for SDP are referred to [15, 17],
and that deals with the infeasible interior-point methods for SDP are referred
to [6, 7, 12, 13].

Notwithstanding the substantial progress made in recent years, work contin-
ues on the numerical methods for the SDP, and one outstanding issue is the
case with free variables which usually appears in such as quantum chemistry
[18], polynomial optimization [10, 11], and among others. In this paper, we con-
sider the semidefinite programming problem with free variables assuming the
following form

min C •X + g>z

s.t. A •X +Gz = b

X º 0

(1)

where G ∈ Rm×p, g ∈ Rp, and z is a free variable.
For this kind of SDP, we can not directly apply the existing solution methods

to solve the problem, and one natural way is to split the free variable vector
z ∈ Rp into the difference of two nonnegative variable vectors to convert problem
(1) into a standard SDP as was done in [5]. However, this conversion not only
makes the scale of the SDP doubled but also yields some difficulties in computing
as the converted SDP may have a continuum of optimal solutions and its dual
may have no interior feasible solution. An alternative approach to the problem
is to transform it into a standard SDP via eliminating the free variables [5].
Although the scale of the problem is reduced by doing so, the operation is not
easy to implement and it may make a SDP problem from sparse to denser and
hence may affect the efficiency of the solution method.

In this paper, motivated by the successful application of the regularization
technique of Mészáros to linear conic optimization with free variables [9], we
design a regularization interior point method for SDP with free variables. Since
there are no relax variables are involved in the new reformulation and no tedious
preprocess needed in the new algorithm, the designed method is more practical
compared with the existing solution methods for SDP with free variables. The
convergence of the method is also established under weak conditions.

To end this section, we give some of notations used in the paper. Let Sn
+(Sn

++)
denote the set of the n × n positive semidefinite (definite) symmetric matrices.
The abbreviation s.p.d. is the shorthand for symmetric positive definite. For
A ∈ Rm×n, B ∈ Rk×l, its Kronecker product, denoted by A⊗B, is defined as




a11B · · · a1nB
...

...
am1B · · · amnB


 .
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For A ∈ Rn×n, λi(A) denotes eigenvalues of A which are arranged in nonin-
creasing order w.r.t. i = 1, 2, · · · , n, and ρ(A) denotes the spectrum radius of
matrix A. For A ∈ Rm×n with rank r, its i-th singular value is denoted by
σi(A), and its Euclidean norm and the Frobenius norm are denoted by ‖A‖ and
‖A‖F , respectively. Furthermore, we let vec(A) denote the mn-vector obtained
by stacking the columns of A from the first to the last.

2. Direction Searching

For problem (1), we can readily establish its Lagrangian dual program [9]

max b>y

s.t.
m∑
i=1

yiAi + S = C

G>y = g
S º 0

(2)

and its optimal condition

A •X +Gz = b, X º 0
m∑
i=1

yiAi + S = C, S º 0

G>y = g,
XS = 0.

(3)

which is equivalent to the original problem (1).
It is well known that Newton method is an efficient solution method for solving

system of equations. However, the classical Newton method can not be directly
applied to solve system (3) due to the nonnegative definiteness constraint of
variables X,S. Similar to the interior algorithm for standard SDP [3, 4], we
adapt a stepsize rule in the Newton iterative procedure to guarantee that all
the iterates remain strictly feasible and meanwhile they are not too close to
the boundary. Furthermore, to obtain a longstep in the iterative procedure,
we make a bias of the Newton direction to the interior of the feasible region.
To be precise, we replace the fourth equation in system (3) by a parameterized
equation to obtain the following system of equation





A •X +Gz = b, X º 0
m∑
i=1

yiAi + S = C, S º 0

G>y = g
XS = σµI

(4)

For this system, it can be shown that the parameterized system (4) has
a unique solution, denoted by (X(µ), z(µ), y(µ), S(µ)), for each µ > 0 under
the condition that matrices Ai are linearly independent for i = 1, 2, · · · ,m
and SDP (1) has a strictly feasible interior point [4]. In this sense, we call
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(X(µ), z(µ), y(µ), S(µ)) a central path of (1) and (2). Note that for each µ > 0,
we derive the duality gap

µ = X(µ) • S(µ)/n.
Certainly, if µ → 0, then the limit of the central path yields a solution for (1)
and (2).

For point (X, z, y, S) with X, S Â 0, the Newton direction (∆X,∆z,∆y,∆S)
of (4) at the current point satisfies




A •∆X +G∆z = −
(
A •X +Gz − b

)

m∑
i=1

∆yiAi +∆S = −
( m∑

i=1

yiAi + S − C
)

G>∆y = −(G>y − g)
X∆S +∆XS = σµI −XS

(5)

Obviously, ∆S is symmetric due to the second equation in (5). However, a
crucial observation is that ∆X is not necessarily symmetric since the product of
two symmetric matrices X,∆S may not be symmetric. To make ∆X to be sym-
metric and hence make X + α∆X symmetric for any α > 0, many researchers
have proposed various techniques to symmetrize the fourth equation in the pre-
ceding Newton system [4, 6, 14, 15] and a popular one is that proposed by Zhang
in [17]

HP (A) =
1

2
(PAP−1 + (PAP−1)>), ∀A ∈ Rn×n,

where P ∈ Rn×n is a nonsingular matrix. In our algorithm designed below, we
take the matrix P = S

1
2 . Then Newton equation (5) becomes





A •∆X +G∆z = −
(
A •X +Gz − b

)

m∑
i=1

∆yiAi +∆S = −
( m∑

i=1

yiAi + S − C
)

G>∆y = −(G>y − g)
H

S
1
2
(X∆S +∆XS) = σµI −H

S
1
2
(XS)

(6)

To solve this system, we transformed it into the vector version to obtain



Avec(∆X) +G∆z = rp
A>∆y + vec(∆S) = vec(Rd)
G>∆y = rd
Evec(∆X) + Fvec(∆S) = vec(Rc)

(7)

where
A> = (vecA1, vecA2, · · · , vecAm),
rp = −(AvecX +Gz − b),
vec(Rd) = −(A>y + vec(S)− vec(C)),
rd = −(G>y − g),
Rc = 2(σµS − SXS),
E = 2S ⊗ S, F = SX ⊗ I + I ⊗ SX.
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For simplicity, we drop the subscript S
1
2 from H

S
1
2
from now on. For the cur-

rent interior iterate (Xk, zk, yk, Sk) of (3), the new iterate (Xk+1, zk+1, yk+1, Sk+1)
∈ Sn

++ ×Rp ×Rm × Sn
++ is generated as follows





Xk+1 = Xk + αk∆Xk,
zk+1 = zk + αk∆zk,
yk+1 = yk + αk∆yk,
Sk+1 = Sk + αk∆Sk,

(8)

where αk ∈ (0, 1] is carefully chosen in order that the new iterate satisfies the
centrality conditions

ρ(H(Xk+1Sk+1)) ≥ γ1µk+1,

Xk+1 • Sk+1 ≥ max{γ2‖rk+1
p ‖, γ3‖vecR(k+1)

d ‖, γ4‖r(k+1)
d ‖} (9)

and the decrease condition of the merit function X • S:
Xk+1 • Sk+1 ≤ (1− αk(1− β))Xk • Sk, (10)

where γ̂ ∈ (0, 1), β ∈ (0, 1), and constants γ1, γ2, γ3, andγ4 are defined by

γ1 = min
{
γ̂, λn(H(X0S0))

µ0

}
, γ2 = min

{
γ̂, X0•S0

‖r(0)p ‖

}
,

γ3 = X0•S0

‖vecR(0)
d ‖ , γ4 = min

{
γ̂, X0•S0

‖r(0)d ‖

}
.

(11)

This choice of constants guarantees that the quantity Xk • Sk is driven to zero,

and ‖vec(R(k)
d )‖, ‖r(k)p ‖, ‖r(k)d ‖ are all pushed to zero due to condition (9).

It should be noted that condition (9) and decrease condition (10) are the
generalization of that for standard SDP [2], which are actually the generalization
of that for standard linear programming [8].

To solve linear system (7), we reduce system (7) to the following system

AE−1
k FkA>∆yk +G∆zk = r(k)p +AE−1

k Fkvec(R
(k)
d )−AE−1

k vec(R(k)
c ),

G>∆yk = r
(k)
d

(12)

For simplicity, setMk = AE−1
k FkA>. Now, if the coefficient matrix of the sys-

tem above is nonsingular, then the linear system (12) can be solved via Cholesky
factorization to obtain ∆yk,∆zk, and then ∆Xk, and ∆Sk can be computed via

vec(∆Sk) = vec(R
(k)
d )−A>∆y

vec(∆Xk) = E−1
k (vec(R(k)

c )− Fkvec(∆Sk)).
(13)

However, the coefficient matrix is not generally nonsingular due to the existence
of the free variable z. To handle this case, we apply the Mészáros regularization
technique to the system. That is, we introduce a specified δk > 0 into the second
equation of system (12) to write it as

AE−1
k FkA>∆yk +G∆zk = r(k)p +AE−1

k Fkvec(R
(k)
d )−AE−1

k vec(R(k)
c ),

G>∆yk − δk∆zk = r
(k)
d

(14)
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To decrease the computation quantity, we only need to calculate an approx-

imated solution to system (14). Here, we let the residual vectors r̄
(k)
p , r̄

(k)
d with

respect to the two equations satisfy

‖r̄(k)p ‖ ≤ η1kXk • Sk,

‖r̄(k)d ‖ ≤ η2kXk • Sk,
(15)

where η1k, η2k ∈ (0, 1).

3. Algorithm and Convergence

Based on the analysis in the previous section, we give the description of our
designed method.

Algorithm 3.1
Initial Step: Let σ0 ∈ (0, 1), ε > 0, γ̂ ∈ (0, 1), β ∈ (0, 1), η10, η20 ∈ (0, 1), δ0 >

0, X0, S0 ∈ Sn
++, z0 ∈ Rp, y0 ∈ Rm be given, compute γ1, γ2, γ3, γ4 from (11) and

let k = 0.
Iterative Step: If Xk • Sk ≤ ε, stop; otherwise, set Accept = 0 and go to

the following while loop.
while Accept = 0 do
solve system (14) approximately with condition (15) to obtain (∆yk,∆zk). Then
compute (∆Xk,∆Sk) from (13).
if δk‖∆zk‖ ≤ 1

2
σk

γ4
Xk • Sk, then set Accept =1; otherwise set δk = 1

2
σk

γ4

Xk•Sk

2‖∆zk‖
end if
end while
Take step αk > 0 such that (Xk+1, zk+1, yk+1, Sk+1) satisfy conditions (9)and
(10).

Set δk+1 = 1
2
σk

γ4

Xk+1•Sk+1

‖∆zk‖ .

Let k = k + 1 and goto the next iteration.

Remark 3.1. The main difference of the designed algorithm with the interior
algorithm for standard SDP designed in [2] lies in that we take an δk-update
strategy into the iterative procedure to make δk‖∆zk‖ ≤ 1

2
σk

γ4
Xk • Sk at each

step which guarantees the generated sequence converges to the solution of our
concerned problem. In the while-loop procedure, δk is monotonically decreased
by at least factor 0.5 to make the while-loop terminate in finite steps.

To establish the convergence of the algorithm, we first explore some properties
of method for SDP.

Lemma 3.1 ([2], Lemma 4.1). Let matrix P be nonsingular, and matrix A,
B ∈ Sn, then |A •B| ≤ n‖Hp(AB)‖F .

The following lemma tells us that if (Xk, zk, yk, Sk) satisfy (9)-(10), then
there exists αk ∈ (0, 1] such that, for all α ∈ [0, αk], (Xk(α), zk(α), yk(α), Sk(α))
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satisfy




ρ(H(Xk(α)Sk(α))) ≥ γ1µk(α)
Xk(α) • Sk(α) ≤ (1− α(1− β))Xk • Sk

Xk(α) • Sk(α) ≥ max{γ2‖rk(p)(α)‖, γ3‖vec(R(k)
d (α))‖}

Xk(α) • Sk(α) ≥ γ4‖r(k)d (α)‖
(16)

where
Xk(α) = Xk + α∆X,
zk(α) = zk + α∆z,
Sk(α) = Xk + α∆S,
yk(α) = yk + α∆y,

r
(k)
p (α) = b−Avec(Xk(α))−Gzk(α),

vec(R
(k)
d ) = vec(C)− vec(Sk(α))−A>yk(α),

r
(k)
d (α) = g −G>yk(α).

Lemma 3.2. Assume iterate (Xk, zk, yk, Sk) satisfies condition (9)-(10) and
(∆Xk,∆zk, ∆yk,∆Sk) is the searching directed generated by Algorithm 3.1 at
each iteration. Then, under condition (15) and

σk − γ2η1k > 0,
σk

2
− γ4η2k > 0, β − σk > 0, (17)

there exists α̂k ∈ (0, 1] such that, for all α ∈ (0, α̂k], (16) holds.

Proof. For simplicity, we omit the iteration index k in the proof. Since the proof
of first three inequalities in (16) can follow from that of Proposition 4.1 in [2],
therefore, we only show that there exists α̂4 such that for all α ∈ (0, α̂4] the last
inequality of (16) holds.

Taking into account that ‖r̄d‖ ≤ η2X •S, X •S ≥ γ4‖rd‖ and the regulariza-
tion condition δ‖∆z‖ ≤ 1

2
σ
γ4
X • S, we obtain

X(α) • S(α)− γ4‖g −G>y(α)‖
= (1− α+ ασ)X • S + α2∆X •∆S − γ4‖g −G>y − αG>∆y‖
= (1− α+ ασ)X • S + α2∆X •∆S − γ4‖rd − α(δ∆z + rd + r̄d‖
= (1− α+ ασ)X • S + α2∆X •∆S − γ4‖(1− α)rd − αr̄d − αδ∆z‖
≥ (1− α+ ασ)X • S + α2∆X •∆S − (1− α)γ4‖rd‖ − αγ4‖r̄d‖ − γ4αδ‖∆z‖
≥ ασX • S + α2∆X •∆S − αγ4η2X • S − ασ

2
X • S

= α(σ/2− γ4η2)X • S + α2∆X •∆S

≥ α(σ/2− γ4η2)X • S − α2|∆X •∆S|.
Since σ

2 − γ4η2 > 0 by the hypothesis, it follows that the fourth inequality of

(16) holds for α ∈ (0, α̂4] with α̂4 = (σ/2−γ4η2)X•S
|∆X∆S| .
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Consequently, the desired result follows if we take

α̂k = min {1, κX • S} , (18)

where κ = min
{

1−γ1

1+γ1
, σ
n‖H(∆X∆S)‖F

, σ−γ2η4

|∆X∆S| ,
σ

|∆X∆S| ,
σ/2−γ4η2

|∆X∆S| ,
β−σ

|∆X∆S|
}
. ¤

The following lemma is taken from Proposition 4.2 in [2], which ensures that
the matrices Xk(α) and Sk(α) with α ∈ [0, α̂k] are s.p.d.

Lemma 3.3. Assume that the hypotheses of Lemma 3.1 are satisfied and let α̂k

be defined as in (18). Then for all α ∈ [0, α̂k] matrices Xk(α) and Sk(α) are all
s.p.d., unless α̂k = 1 and Xk(1)•Sk(1) = 0 in which case (Xk(1), zk(1), yk(1), Sk(1))
is a solution to (3).

Lemma 3.4 ([17], Lemma 4.2). If Sk and Sk+1 are s.p.d., then

λn(HS
1/2
k

(Xk+1Sk+1)) ≤ ρ(H
S

1/2
k+1

(Xk+1Sk+1)).

Based on the previous conclusions, we deduce that the new iterate (Xk+1, zk+1,
yk+1, Sk+1) satisfies conditions (9) and (10). Hence Algorithm 3.1 is well defined.

Before proceeding on the analysis of the behavior of the sequence {Xk • Sk},
we give some observations whose proofs can be found in [2].

Lemma 3.5 ([17], Proposition 2.3). The matrix Ŝk = FkE
>
k is s.p.d. and can

be written as
Ŝk = E

1/2
k F̂kE

1/2
k ,

where
F̂k = E

−1/2
k FkE

1/2
k = S

1/2
k XkS

1/2
k ⊗ I + I ⊗ S

1/2
k XkS

1/2
k ,

which is s.p.d.

Remark 3.2. Matrices XkSk, SkXk, X
1/2
k SkX

1/2
k and S

1/2
k XkS

1/2
k are all sim-

ilar. Moreover, since

H(XkSk) =
1

2
(S

1/2
k XkSkS

−1/2
k + (S

1/2
k XkSkS

−1/2
k )>) = S

1/2
k XkS

1/2
k ,

matrices H(XkSk) and XkSk are similar. If we denote the eigenvalues of these
matrices as λi, i = 1, · · · , n, then from (g) of Lemma 6.1 in [2], the eigenvalues

of Fk and F̂k are given by λk
i + λk

j , for i, j = 1, · · · , n.

Set Dk = Ŝk
−1/2

Fk = Ŝk
1/2

E−>
k . Then D−>

k = Ŝk
−1/2

Ek = Ŝk
1/2

F−>
k and

D>
k Dk = (Ŝk

−1/2
Fk)

>Ŝk
1/2

E−>
k = F>

k (Ŝk
−1/2

)>Ŝk
1/2

E−>
k = F>

k E−>
k .

The symmetry of E−1
k Fk yields

D>
k Dk = E−1

k Fk.

Furthermore, from Lemma 3.3 in [17], one has

‖H(∆Xk∆Sk)‖F ≤ 1

2

√
λk
1

λk
n

(‖D−>
k vec(∆Xk)‖2 + ‖Dkvec(∆Sk)‖2), (19)
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and

|∆Xk •∆Sk| ≤‖D−>
k vec(∆Xk)‖‖Dkvec(∆Sk)‖

≤1

2
(‖D−>

k vec(∆Xk)‖2 + ‖Dkvec(∆Sk)‖2).
(20)

In order to prove the global convergence of the method, we further need the
following assumption.
Assumption 3.1. The sequence {Xk • Sk} is bounded, i.e. there exists a
constant c1 such that max{‖Xk‖, ‖Sk‖} ≤ c1 for every k > 0.

Next, we will show the boundedness of ‖E−1
k Fk‖, ‖Mk‖ and ‖H(∆Xk∆Sk)‖F ,

and the existence of ᾱ ∈ (0, 1) such that for every k, α̂k ≥ ᾱ.
In fact, from (a) and (f) of Lemma 6.1 in [2], one has

‖Ek‖ = 2‖Sk ⊗ Sk‖ = 2‖Sk‖2 ≤ 2c21,

‖E−1
k ‖ =

1

2
‖S−1

k ⊗ S−1
k ‖ =

1

2
‖S−1

k ‖2.
Thus, from Propositions 4.3, 4.4, 4.5 in [2], we obtain the following conclusion.

Proposition 3.1. Let Assumption 3.1 hold and (Xk, zk, yk, Sk) be the generated
sequence by Algorithm 3.1. Then the followings hold:

(1) ‖E−1
k Fk‖ ≤ c21n

γ1Xk•Sk
,

(2) ‖(E−1
k Fk)

−1‖ ≤ c21n
γ1Xk•Sk

,

(3) ‖M−1
k ‖ ≤ c21n

γ1Xk•Skσ2
m(A) ,

(4) ‖S−1
k ‖ ≤ c21n

√
n

γ1Xk•Sk
.

Proposition 3.2. Let Assumption 3.1 hold and {Xk, zk, yk, Sk} be the sequence
generated by Algorithm 3.1. If Xk • Sk ≥ ε̃ for some ε̃ > 0 and all k, then there
exists a constant ω > 0 such that ‖H(∆Xk∆Sk)‖F ≤ ω for all k.

Proof. Here we omit the iteration index k in the following proof.
From the proof of Proposition 4.6 in [2], we have

‖D−>vec(∆X)‖ ≤ ‖DA>∆y‖+ ‖Dvec(Rd)‖+ 2σµ‖Ŝ−1/2vec(S)‖+ ‖D−>vec(X)‖ (21)

‖Dvec(∆S)‖ ≤ ‖Dvec(Rd)‖+ ‖DA>∆y‖, (22)

2σµ‖Ŝ−1/2vec(S)‖ ≤ σc1n
3/4

γ1
, (23)

‖Dvec(Rd)‖ ≤ c1
√
nX • S√

γ1X0 • S0
‖vec(R(0)

d )‖, (24)

‖D−>vec(X)‖ ≤ c21n√
γ1X • S . (25)

As for term ‖DA>∆y‖, it holds that
‖DA>∆y‖2 = ∆y>AD>DA>∆y = ∆y>AE−1FA>∆y ≤ ‖∆y‖‖M∆y‖. (26)
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Since the term rp = b−Avec(X)−Gz and iterate (X+∆X, z+∆z, y+∆y, S+∆S)
is feasible, it holds that

M∆y = rp −AE−1vec(Rc) +AE−1Fvec(Rd) + r̄p −G∆z

= b−Avec(X)−Gz −AE−1vec(2(σµS − SXS))

+AE−1Fvec(Rd) + r̄p −G∆z

= b−Avec(X)−G(z +∆z)− σµAvec(S−1)

+Avec(X) +AE−1Fvec(Rd) + r̄p

= b−G(z +∆z)− σµAvec(S−1) +AE−1Fvec(Rd) + r̄p

= Avec(X +∆x)− σµAvec(S−1) +AE−1Fvec(Rd) + r̄p.

Thus, combining (15) with inequalities

µk+1 ≥
k∏

i=1

(1− αi)µk, R
(k+1)
d = (1− αk)R

(k−1)
d =

k∏

i=1

(1− αi)R
(0)
d ,

and (2),(4) in Proposition 3.1 yields

‖M∆y‖ = ‖Avec(X +∆x)− σµAvec(S−1) +AE−1Fvec(Rd) + r̄p‖
≤ σ1(A)‖vec(X +∆x)‖+ σµσ1(A)‖vec(S−1)‖
+ σ1(A)‖E−1F‖‖vec(Rd)‖+ ‖r̄p‖

≤ σ1(A)
√
nc1 + σ1(A)

c21n

γ1

‖vec(R(0)
d )‖

X0 • S0
+ σσ1(A)

c1
√
n

γ1
+ ηX • S.

(27)

Thus, by (3) of Proposition 3.1, we get

‖∆y‖ ≤ c21nσ1(A)

γ1X • Sσm(A)

(
√
nc1 +

c21n

γ1

‖vec(R(0)
d )‖

X0 • S0
+ σ

c1
√
n

γ1

)
+ η

c21n

γ1σ2
m(A)

. (28)

Summarizing (19), inequality
√

λ1

λn
≤

√
n
γ1

and (21)-(28) yields that there

exists constant ω > 0 such that ‖H(∆X∆S)‖F ≤ ω. ¤

Remark 3.3. From (18),(19), (20) and Proposition 3.2, we can show that there
exists constant ᾱ ∈ (0, 1) independent of k, such that α̂k ≥ ᾱ.

With these conclusions at hand, we are now at the position to state our main
result in this section.

Theorem 3.1. Let Assumption 3.1 hold and constants γ1, γ2, γ3, γ4 be defined
by in (11). Assume that constant β and the parameters η1k, η2k and σk are such
that β − σk > θ1 > 0 and σk − γ2η1k > θ2 > 0, σk

2 − γ4η2k > θ3 > 0, ∀ k > 0,
and assume σk is bounded away from zero whenever Xk • Sk → 0. Then the
sequence {Xk • Sk} generated by Algorithm 3.1 with ε = 0 converges to 0.
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Proof. Since sequence {Xk • Sk} is monotonically decreasing and bounded below
from zero, therefore, it is convergent.

Now, we prove the conclusion by reductio ad absurdum. Presuppose that
Xk • Sk → ε̄ > 0. From assumption, it follows that there exists σ̄ such that
σk ≥ σ̄ for all k. From Lemma 3.2, we have

Xk+1 • Sk+1 ≤ (1− α̂k(1− β))Xk • Sk, (29)

with α̂k being given by (18). Furthermore, by the assumption and Remark 3.2,
it follows that α̂k ≥ ᾱ, where

ᾱ = min

{
1,

ε̄

nω
min

{
1− γ1
1 + γ1

σ̄, θ1, θ2, θ3

}}
.

Then α̂k is bounded away from zero, and this along with (29) implies that
Xk • Sk → 0, as k → ∞. Thus, we arrive at a contradiction, this completes the
proof. ¤
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