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ADJOINT SYSTEM FOR A MAGNETO-CONVECTIVE FLOW

IN AN ACTIVE MUSHY LAYER

DAMBARU BHATTA∗ AND DANIEL N. RIAHI

Abstract. Here we consider magneto-convection in a mushy layer which is
formed during solidification of binary alloys. The mushy layer is treated as
an active porous media with variable permeability. The equations govern-
ing the layer are conservation of mass, conservation of heat, conservation
of solute, magnetic induction equation, momentum equation governed by
the Darcy’s law and Maxwell’s equations for the magnetic field. To study
the second order effects on the flow without solving the second order sys-
tem, we need to obtain the adjoint system for the flow. This motivates
the authors we derive the adjoint system analytically for the mushy layer
case. Numerical results of the adjoint system are presented for passive and
active mushy layers at the onset of the motion using a set of parameters
experimentalists use.
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1. Introduction

Analysis of stability of flows has been an important active research area in
many applied fields including applied mathematics, various sciences and many
branches of engineering. Instability leads to a common phenomena known as
turbulence in many applied problems. Stability related to hydrodynamics has
been studied in the nineteenth century by various famous scientists including
Helmholtz, Kelvin, Rayleigh and Reynolds.

Experimentalists ([1], [2], [3], [4], [5]) observed a horizontal dendritic layer
during alloy solidification. This partially solidified horizontal region is known as
the mushy layer. Convective flows in the mushy layer are known to produce un-
desirable effects on the solid in the final form ([6], [7], [8]). During the last two
decades, various theoretical and experimental studies have been performed to

Received October 26, 2010. Revised January 12, 2011. Accepted January 21, 2011.
∗Corresponding author.

c© 2011 Korean SIGCAM and KSCAM.

1269



1270 D. Bhatta & D. N. Riahi

study the effect of convective flow in chimney formation. The fluid flow within
the mushy layer can cause impurity in the final form of solidified alloy. Dur-
ing solidification, experimentalists observed vertical chimneys or channels void
of solid that are typically oriented in the direction of gravity which can gen-
erate imperfections on the final product. It is accepted by various researcher
in this field that convection in the chimneys causes a thin hair like structure
called freckles. The phenomenon of natural convection arises in a fluid when
the temperature change causes density variations resulting in buoyancy forces.
This kind of heat transfer can be seen in solidification of binary alloys. Var-
ious studies ([5], [6], [7], [8]) have been carried out in details to analyze the
mechanism of freckle formation during the solidification of alloys. A set of gov-
erning equations for a mushy layer, and performed stability analysis for linear
case was proposed in ([7], [8]) by Worster. He observed two modes of com-
positional convection which are primarily responsible for the instability at the
onset of motion and concluded that freckle formation was due to the mushy
layer mode. By assuming small growth Peclet number and infinite Lewis num-
ber, a simplified single layer model was introduced by Amberg and Homsy ([9]).
They performed weakly nonlinear analysis and calculated a critical value of the
combined parameter (mush permeability and solid fraction variations) for the
transition from supercritical to subcritical rolls. A weakly nonlinear analysis
of simplified mushy layer model that was proposed in ([9]) was carried out by
Anderson and Worster ([10]). A near eutectic approximation was applied and
the limit of large far-field temperature was considered. Such asymptotic limits
allowed them to examine the dynamics of mushy layer. They also considered
the limit of large Stefan number, which enabled them to reach a domain for the
existence of the oscillatory mode of convection. Okhuysen and Riahi ([11], [12]
) analyzed a weakly nonlinear buoyant convection for a mushy layer with per-
meable mush-liquid interface. They generalized a number of assumptions made
in the previous theoretical studies by other researchers. They concluded a sub-
critical down-hexagonal pattern for variable permeability case that corresponds
to the smallest value of the Rayleigh number. Results using perturbation and
marginal stability analysis of magneto-convection in an active mushy layer have
been presented in ([13], [14]).

Nonlinear studies are gaining importance in many branches of applied sciences
and engineering. In 1944, Lev Landau ([15]) proposed a nonlinear equation to
analyze hydrodynamic stability. The Landau equation has been derived for
various cases ([16], [17]). To derive Landau equation, the adjoint operator is
required so that one can avoid solving the second order problem which is more
complicated. Our aim here is to derive the adjoint operator for a horizontal
mushy layer. Here we consider the convective flow in a horizontal mushy layer
which has an impermeable mush-liquid interface. The mushy layer obeys Darcy’s
law. We solve the system by adding perturbations to the basic state solutions.
Then we derive the linear system and we obtain the adjoint system analytically
using the linear system by introducing an inner product.
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2. Governing system for the mushy layer

Here we consider a horizontal mushy layer of thickness d which is cooled from
below during solidification of binary alloys as shown in the figure 1.

Figure 1. Geometry for our system

x

z

Liquid

Mushy Layer

Solid

V0

T, C

T0, C0

Te, Ce

o

T-Temperature
C-Concentration

d h0

We add magnetic component following Chandrasekhar [17] to the model pro-
posed by Worster ([7], [8]). This system is expressed as

∂T

∂t
+
−→
U .∇T = κ∇2T +

L

γ

∂Φ

∂t

χ
∂C

∂t
+
−→
U .∇C = (C − Cs)

∂Φ

∂t
µ

Π

−→
U = −∇p− (ρ− ρ0) g

−→
k +

α

4π

(
∇×−→

H
)
×−→

H (1)

∂
−→
H

∂t
+
−→
U .∇−→

H = η∇2−→H +
−→
H.∇−→

U

∇.
−→
U = 0.

The equations mentioned in (1) represent conservation of heat, and conserva-
tion of solute, Darcy’s equation, Magnetic Induction equation, conservation of

mass, divergence free magnetic field, respectively. Here
−→
U = U~i+V~j+W~k is the

liquid flux where U, V are used to denote horizontal components, W denotes the

vertical component of
−→
U and ~i, ~j, ~k are the unit vectors along x, y, z directions.

Here µ, p, ρ, ρ0, g, t, T, κ, γ, η, α, L are used to denote the dynamic viscosity
of the liquid, the dynamic pressure, the density of the liquid, a reference density,
the acceleration due to gravity, time, temperature, thermal diffusivity of the
liquid, specific heat of the liquid, magnetic diffusivity, magnetic permeability,
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latent heat per unit mass respectively. Also Φ stands for the local solid volume
fraction, i.e., Φ = 1 − χ with χ is the local liquid volume fraction, C is the
composition of the liquid and Cs is the composition of the solid. Permeability
Π = Π(χ) is a function of the local liquid volume fraction, χ.

The boundary conditions are

T = Te, W = 0,
−→
H =

−→
k at z = 0

T = T0, Φ = W = 0,
−→
H =

−→
k at z = d.

Here Te and Ce represent eutectic temperature and eutectic concentration (at
the solid-mush interface, z = 0) respectively and T0 denotes the temperature at
the mush-liquid interface (at z = d).

2.1.Nondimensionalization. The solidification front is moving upward in the
vertical direction at a constant speed V0. We nondimensionalize the system
in a frame moving with the speed V0 and use the following scalings: veloc-

ity scale is V0, i.e.,
−→U =

−→
U
V0
, length scale is κ

V0
, time scale is κ

V 2
0
, pressure

scale is κµ
Π0

, Θ = T−T0

4T , K = Π0

Π where ∆T = T0 − Te,∆C = C0 − Ce. We

have three nondimensional constants appearing in the derivation, and these are
Rayleigh number, R = βgΠ0∆C

V0µ
, Stefan number, S = L

γ∆T , concentration ratio,

C = Cs−C0

∆C , Robert’s number,τ = κ
η , Chandrasekhar number, Q = αh̃2Π0

4πρ0νη
with

uniformmagetic strength, h̃.
Dimensionless system can be expressed as

(
∂

∂t
− ∂

∂z

)
[Θ− SΦ] +

(−→U .∇
)
Θ = ∇2Θ

(
∂

∂t
− ∂

∂z

)
[(1− Φ)Θ + CΦ] +

(−→U .∇
)
Θ = 0

K−→U +∇P +RΘ
−→
k =

Q

τ

(
∂

∂z
+
−→H.∇

)−→H (2)

(
∂

∂t
− ∂

∂z

)−→H +
(−→U .∇

)−→H =

(
∂

∂z
+
−→H.∇

)−→U +
1

τ
∇2−→H

∇.
−→U = 0

and the boundary conditions are

Θ = −1, W = 0,
−→H = k̂ at z = 0

Θ = Φ = W = 0,
−→H = k̂ at z = δ

Here W is the vertical component of
−→U .
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3. Basic State and Perturbed Systems

Using perturbation, we assume the solutions of the form

Θ(x, y, z, t) = θb(z) + εθ (x, y, z, t)

Φ(x, y, z, t) = φb(z) + εφ (x, y, z, t)
−→U (x, y, z, t) =

−→
0 + ε−→u (x, y, z, t)

P(x, y, z, t) = pb(z) + εp (x, y, z, t) (3)

K(x, y, z, t) = kb(z) + εK (x, y, z, t)
−→H(x, y, z, t) = k̂ + ε

−→
h (x, y, z, t)

where θb, φb, pb, kb, k̂ are solutions to the steady basic state system (system with

no flow) and −→u , θ, φ, p, K,
−→H are perturbed solutions and ε is the perturbation

parameter.

3.1.Basic State System. Using (3) in the system (2), the basic state system
(i.e., system with no flow) can be expressed as

d2θb
dz2

+
dθb
dz

− S dφb

dz
= 0 (4)

(1− φb)
dθb
dz

+ (C − θb)
dφb

dz
= 0 (5)

dpb
dz

+Rθb = 0 . (6)

with the boundary conditions

θb = −1 at z = 0

θb = φb = 0 at z = δ.

Solutions to the basic state system had been presented previously by various
authors. The basic state solution θb can be expressed implicitly by the equation

z =
α− C
α− β

ln

[
1 + α

α− θb

]
+

C − β

α− β
ln

[
1 + β

β − θb

]
(7)

where α, β are given by

α, β =
C + S + θ∞ ±

√
(C + S + θ∞)

2 − 4Cθ∞
2

.

The solution φb can be obtained from θb via

φb =
θb

θb − C (8)

The thickness of the layer can be derived from (7) by using the boundary con-
dition θb = 0 at z = δ.
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3.2.Perturbed System. Using (3) in the system (2), the perturbed system
can be obtained as

(
∂

∂t
− ∂

∂z
−∇2

)
θ − S

(
∂

∂t
− ∂

∂z

)
φ+ w

dθb
dz

= −ε (−→u .∇θ) (9)

(
∂

∂t
− ∂

∂z

)
{(1− φb) θ + (C − θb)φ}+ w

dθb
dz

= ε

{
−−→u .∇θ +

(
∂

∂t
− ∂

∂z

)
(θφ)

}
(10)

kb
−→u +∇p+Rθk̂ − Q

τ

∂
−→
h

∂z
= ε

(
Q

τ

−→
h .∇−→

h −K−→u
)

(11)

(
∂

∂t
− ∂

∂z

)−→
h − ∂−→u

∂z
− 1

τ

(
∇2−→h

)
= ε

(−→
h .∇−→u −−→u .∇−→

h
)

(12)

∇.−→u = 0 (13)

with θ = w = h3 = 0 at z = 0 and θ = φ = w = h3 = 0 at z = δ. Here w

and h3 are vertical components of −→u and
−→
h respectively.

3.3.Linear Perturbed System. Linear perturbed system can be obtained us-
ing equations (3) in the system (2) by comparing the coefficients of ε1 as

(
∂

∂t
− ∂

∂z
−∇2

)
θ − S

(
∂

∂t
− ∂

∂z

)
φ+ w

dθb
dz

= 0 (14)

(
∂

∂t
− ∂

∂z

)
{(1− φb) θ + (C − θb)φ}+ w

dθb
dz

= 0 (15)

kb
−→u +∇p+Rθk̂ − Q

τ

∂
−→
h

∂z
= 0 (16)

(
∂

∂t
− ∂

∂z

)−→
h − ∂−→u

∂z
− 1

τ

(
∇2−→h

)
= 0 (17)

∇.−→u = 0 (18)

Here the boundary conditions at the solidifying front are

θ = w = h3 = 0

and at the mush-liquid interface are

θ = φ = w = h3 = 0 .

To eliminate the pressure from the equation (16), we take the double curl of
the equation (16). To do that, we use

∇×∇×−→
f =

(
∂2f3
∂x∂z

,
∂2f3
∂y∂z

, −∂2f3
∂x2

− ∂2f3
∂y2

)
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and

∇×−→
f =

(
∂f3
∂y

, −∂f3
∂x

, 0

)

with
−→
f = (0, 0, f3) . Now writing −→u = (u, v, w) , we have

∇×∇× (kb
−→u ) =

(
∂2(kbv)

∂x∂y
+

∂2(kbw)

∂x∂z
− ∂2(kbu)

∂y2
− ∂2(kbu)

∂z2
,

∂2(kbw)

∂y∂z
+

∂2(kbu)

∂x∂y
− ∂2(kbv)

∂z2
− ∂2(kbv)

∂x2
,

∂2(kbu)

∂x∂z
+

∂2(kbv)

∂y∂z
− ∂2(kbw)

∂x2
− ∂2(kbw)

∂y2

)
.

The continuity equation implies ∂u
∂x + ∂v

∂y = −∂w
∂z , which yields

kb
∂u

∂x
+ kb

∂v

∂y
= −kb

∂w

∂z

∂

∂z

(
kb

∂u

∂x

)
+

∂

∂z

(
kb

∂v

∂y

)
= − ∂

∂z

(
kb

∂w

∂z

)

∂2(kbu)

∂x∂z
+

∂2(kbv)

∂y∂z
= −∂kb

∂z

∂w

∂z
− kb

∂2w

∂z2
.

Thus the third component of ∇×∇× (kb
−→u ) becomes

∂2(kbu)

∂x∂z
+

∂2(kbv)

∂y∂z
− ∂2(kbw)

∂x2
− ∂2(kbw)

∂y2

= −∂kb
∂z

∂w

∂z
− kb

∂2w

∂z2
− kb

∂2w

∂x2
− kb

∂2w

∂y2

= −∂kb
∂z

∂w

∂z
− kb∇2w.

Also writing −→u = (u, v, w) = ∇×∇×
(
uP

−→
k
)
+∇×

(
uT

−→
k
)
(as ∇.−→u = 0, Chan-

drasekhar 1961), where uP and uT represent poloidal and toroidal components
of −→u , we obtain

u =
∂2uP

∂x∂z
+

∂uT

∂y

v =
∂2uP

∂y∂z
− ∂uT

∂x

w = −∆2uP

Here ∆2 is used to denote the horizontal Laplacian. Thus the third component
of ∇×∇× (kb

−→u ) is given by
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∂kb
∂z

∂

∂z
(∆2uP ) + kb∇2 (∆2uP )

Similarly, for the third component of ∇×∇× (Rθ
−→
k ), we have

−R
[
∂2θ

∂x2
+

∂2θ

∂y2

]
= −R(∆2θ).

Writing
−→
h = (h1, h2, h3) = ∇×∇×

(
hP

−→
k
)
+∇×

(
hT

−→
k
)
(as ∇.

−→
h = 0), we

can express

−→
h = (h1, h2, h3) =

(
∂2hP

∂x∂z
+

∂hT

∂y
,
∂2hP

∂y∂z
− ∂hT

∂x
, −∆2hP

)

Now the third component of ∇×∇×
(

∂
−→
h

∂z

)
as

∂2

∂x∂z

(
∂h1

∂z

)
+

∂2

∂y∂z

(
∂h2

∂z

)
− ∂2

∂x2

(
∂h3

∂z

)
− ∂2

∂y2

(
∂h3

∂z

)

= − ∂2

∂x2

(
∂h3

∂z

)
− ∂2

∂y2

(
∂h3

∂z

)
− ∂2

∂z2

(
∂h3

∂z

)

= −∇2

(
∂h3

∂z

)
= ∇2

{
∂

∂z
(∆2hP )

}

Thus, the third component of ∇×∇×
(

Q
τ

∂
−→
h

∂z

)
is

Q

τ
∇2

{
∂

∂z
(∆2hP )

}

Now eliminating the pressure term from equation (16), the linear system, i.e.,
system with equations (16), (14), (15) and (17) respectively, becomes

k′
b
∂

∂z
(∆2uP ) + kb∇2 (∆2uP )−R (∆2θ)− Q

τ
∇2

{
∂

∂z
(∆2hP )

}
= 0 (19)

(
∇2 +

∂

∂z
− ∂

∂t

)
θ − S

(
∂

∂z
− ∂

∂t

)
φ+ (∆2uP )

dθb
dz

= 0 (20)

(
∂

∂z
− ∂

∂t

)
[(1− φb) θ + (C − θb)φ] + (∆2uP )

dθb
dz

= 0 (21)

(
∂

∂z
− ∂

∂t

)
(∆2hP ) +

∂

∂z
(∆2uP ) +

1

τ
∇2 (∆2hP ) = 0 (22)

with boundary conditions

uP = θ = hP = 0 at z = 0

uP = θ = φ = hP = 0 at z = δ.

We assume that normal mode solutions ([16], [17]) in two dimensions, i.e.,

up = uP0(z)e
σt+iαx +C.C.

θ = θ0(z)e
σt+iαx +C.C.
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φ = φ0(z)e
σt+iαx +C.C.

hP = hP0
(z)eσt+iαx +C.C.

Here σ and α are real numbers, and C.C. stands for complex conjugate. The
equations (19) to (22) becomes

kb
[
D2 − α2

]
uP0 −Rθ0 + k′b (DuP0)−

Q

τ
D

[
D2 − α2

]
hP0 = 0

[
D2 +D − α2 − σ

]
θ0 − S (D − σ)φ0 − α2θ′buP0

= 0

(D − σ) [(1− φb) θ0 + (C − θb)φ0]− α2θ′buP0
= 0

DuP0
+

[
D +

1

τ

(
D2 − α2

)− σ

]
hP0

= 0

where D = ∂
∂z and the boundary conditions are given by

uP0 = θ0 = hP0 = 0 at z = 0

uP0 = θ0 = φ0 = hP0 = 0 at z = δ.

Substituting 1
τ

(
D2 − α2

)
hP0 from the last equation into the first equation, we

obtain the perturbed linear system as

L0q0 = 0 (23)

with

L0 =




(kb + Q)D2

+k′
bD − α2kb −R 0 Q

(
D2 − σD

)

−α2θ′
b D2 + D − α2 − σ −S (D − σ) 0

α2θ′
b φ′

b − (1 − φb) (D − σ) θ′
b + (θb − C) (D − σ) 0

τD 0 0 D2 + τD
−α2 − τσ




(24)

and q0 =
[
uP0 θ0 φ0 hp0

]Tr
. Here Tr is used to denote the transpose.

4. Adjoint System

Now we define the adjoint operator La of the linear operator L0 as

< L0q0, qa > = < q0, Laqa > (25)

where L0 is given by (24), qa =
[
uPa θa φa hPa

]Tr
. Here the sub-index a

is used to denote the quantities belonging to the adjoint system and Tr represents
the transpose. The inner product mentioned in (25) is defined by
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<
−→
f , −→g > =

∫ δ

0

−→
f · −→g ∗dz =

3∑

i=1

∫ δ

0

fig
∗
i dz (26)

with
−→
f = (f1, f2, f3) and

−→g = (g1, g2, g3) . Here, δ, the dimensionless thickness
of the layer and ∗ is used to denote the complex conjugate. It can be easily shown
that

<
−→
f , −→g ∗ >=< −→g ,

−→
f ∗ > and < −→g ,

−→
f >=<

−→
f , −→g >∗ . (27)

To obtain the adjoint system, we multiply the equations (19) , (20), (21) and
(22) by uPa , θa, φaand hPa , respectively, and add them and then integrate with
respect to z from z = 0 to z = δ, i.e.,

< L0q0, q
∗
a > =

∫ δ

0

{(
(kb +Q)D2 + k′bD − α2kb

)
uP0 −Rθ0 +Q

(
D2 − σD

)
hP0

}
uPadz

+

∫ δ

0

{−α2θ′buP0 +
(
D2 +D − α2 − σ

)
θ0 − S (D − σ)φ0

}
θadz

+

∫ δ

0

{
α2θ′buP0 + [φ′

b − (1− φb) (D − σ)] θ0

+ [θ′b + (θb − C) (D − σ)]φ0}φadz

+

∫ δ

0

{
τDuP0 +

(
D2 + τD − α2 − τσ

)
hP0

}
hPadz. (28)

Boundary conditions for the adjoint system are

uPa = θa = φa = hPa = 0 at z = 0

uPa = θa = hPa = 0 at z = δ.

Using integration by parts on the right hand side of (28), and the boundary
conditions, we get

< L0q0, q
∗
a > =

∫ δ

0

[{
(kb +Q)D2 + k′bD − α2kb

}
uPa − α2θ′bθa + α2θ′bφa − τDhPa

]
uP0dz

+

∫ δ

0

[−RuPa +
{
D2 +D − α2 − σ

}
θa + (1− φb) (D + σ)φa

]
θ0dz

+

∫ δ

0

[S (D + σ) θa + (C − θb) (D + σ)φa]φ0dz

+

∫ δ

0

[
Q
(
D2 + σD

)
uPa +

(
D2 − τD − α2 − τσ

)
hPa

]
hP0dz = 0
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Now using the relation (27), we have

< L0q0, q∗a >=< qa, (L0q0)
∗
>=< qa, L0q

∗
0 > as L∗

0 = L0

and using the definition of La, we obtain

< L0q0, q∗a > = 0 = < qa, L0q
∗
0 > = < Laqa, q∗0 >

yielding Laqa = 0. Hence, we can write the adjoint system as

{
(kb +Q)D2 + k′

bD − α2kb
}
uPa − α2θ′bθa + α2θ′bφa − τ (DhPa) = 0 (29)

−RuPa +
{
D2 −D − α2 − σ

}
θa + (1− φb) (D + σ)φa = 0 (30)

S (D + σ) θa − (C − θb) (D + σ)φa = 0 (31)

Q
(
D2 + σD

)
uPa +

(
D2 − τD − α2 − τσ

)
hPa = 0 (32)

and, in turn, we can write our adjoint operator La as

La =




(kb +Q)D2

+k′bD − α2kb −α2θ′b α2θ′b −τD

−R D2 −D − α2 − σ (1− φb) (D + σ) 0

0 S (D + σ) (C − θb) (D + σ) 0

Q
(
D2 + σD

)
0 0 D2 − τD

−α2 − τσ




(33)

Thus, the adjoint system becomes

Laqa = 0 (34)

It can be shown that

(La)a = L0

as

< L0q0, qa > = < q0, Laqa > = < (La)a q0, qa > .

5. Numerical Results

Here we present computational results for two cases: (i) passive layer (layer
with constant permeability) and (ii) active layer (layer with variable permeabil-
ity). Following Worster, we use the expression for K as 1

(1−φ)n with n = 3 for

variable permeability and n = 0 for constant permeability where φ represents
the solid volume fraction. We chose the following parameters for further cal-
culations: 3.2 for Stefan number, 9.0 for concentration ratio, 0.1 for far-field
temperature, these are based on previous experimental and theoretical studies
([1], [2], [3], [4], [7], [8]). We chose the value of the Chandrasekhar number, Q
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as 1.0 for our numerical results. First we obtain the basic state solutions by
performing computation on the equations (7) and (7) using Muller’s method.
We use JMSL library to compute the zeros of (7). The thickness of the layer is
computed from (7) by using the boundary condition θb = 0 at z = δ for further
use. After computing the basic state solutions, we compute the critical Rayleigh
number and the critical wavenumber by solving the linear problem numerically
using the fourth-order Runge-Kutta method in combination of shooting method
([18]) at the onset of the motion. In order to solve the linear system (23), we
first convert this system into a system of seven first-order linear ordinary dif-
ferential equations. We obtain 2.034 and 26.6032 as critical wavenumber and
Rayleigh number, respectively, for constant permeability case and 2.009 and
29.0555 as critical wavenumber and Rayleigh number, respectively, for variable
permeability case. Linear marginal stability curves are shown in figure 2.
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Figure 2. Comparison of the marginal stability curves

Then, we compute the solutions of the adjoint system given by (34) by con-
verting it into a system of seven first-order linear ordinary differential equations
by using the fourth-order Runge-Kutta method. Some of the solutions of the
adjoint system are presented in figure 3 through 5.
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Figure 3. Adjoint solutions related to the vertical velocity component
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These results indicate that linear theory proposes the critical wavenumber
and critical Rayleigh number are higher for the variable permeability layer than
the constant permeability layer implying more efficient and stable active mush,
which is observed in experiments. Figure 3 presents the results of the adjoint
solution related to the vertical velocity component and figure 4 displays the
adjoint solution for the solid volume fraction for both active and passive mushy
layer cases.
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Figure 4. Adjoint solutions for the solid volume fraction

Figure 5 shows the adjoint solutions for the magnetic component for both the
cases.
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Figure 5. Adjoint solutions for the magnetic component

6. Conclusion

Here we have considered magneto-convection in a mushy layer which is formed
during solidification of binary alloys. We have derived the adjoint system an-
alytically for the mushy layer with an impermeable mush-liquid interface. The
mushy layer has been treated as an active porous media with variable perme-
ability. We have derived the linear system using perturbation technique and
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basic state solutions. Adjoint system is derived analytically using linear system
by introducing an inner product. Numerical results for the adjoint system are
presented for passive and active mushy layers at the onset of the motion using
a set of parameters experimentalists use.
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