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POLYNOMIAL CONVERGENCE OF

PREDICTOR-CORRECTOR ALGORITHMS FOR SDLCP

BASED ON THE M-Z FAMILY OF DIRECTIONS†

FEIXIANG CHEN∗ AND RUIYIN XIANG

Abstract. We establishes the polynomial convergence of a new class of
path-following methods for semidefinite linear complementarity problems
(SDLCP) whose search directions belong to the class of directions intro-
duced by Monteiro [9]. Namely, we show that the polynomial iteration-
complexity bound of the well known algorithms for linear programming,
namely the predictor-corrector algorithm of Mizuno and Ye, carry over to
the context of SDLCP.
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1. Introduction

Several authors have discussed generalizations of interior-point algorithms for
linear programming (LP) to the context of semidefinite programming (SDP).
The landmark work in this direction is due to Nesterov and Nemirovskii [1, 2],
where a general approach for using interior-point algorithms for solving convex
programs is proposed, based on the notion of self-concordant functions. They
show that the problem of minimizing a linear function over a convex set can
be solved inpolynomial timeas long as a self-concordant barrier function for the
convex set is known. On the other hand, Alizadeh [3] extends Yeprojective po-
tential reduction algorithm for LP to SDP and argues that many known interior
point algorithms for LP can also be transformed into algorithms for SDP in a
mechanical way. Since then many authors have proposed interior-point algo-
rithms for solving the SDP problems and SDLCP, including Alizadeh, Haeberly
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and Overton [4], Freund [5], Helmberg, Rendl, Vanderbei and Wolkowicz [6],
Kojima, Shida and Shindoh [7], Kojima, Shindoh and Hara [8], Monteiro [9,10],
Monteiro and Zhang [11,12], and Zhang [13].

2. Notation and Terminology

The set of all symmetric n×n matrices is denoted by Sn. For Q ∈ Sn, Q º 0
means Q is positive semidefinite and Q Â 0 means Q is positive definite. The
inner product between them in the vector space Rm×n is defined as P •Q ≡ Tr
PTQ. The Euclidean norm and its associated operator norm are both denoted by
‖◦‖; The Frobenius norm of Q ∈ Rn×n is ‖Q‖F ≡ (Q•Q)1/2. For Q,R ∈ Rn×n.
Sn
+ and Sn

++ denote the set of all matrices in Sn which are positive semidefinite
and positive definite, respectively.

3. The SDLCP problem and preliminary discussion

This section describes the SDLCP problem and the corresponding assump-
tions. It also contains some notations and terminology that are used throughout
our presentation. Semidefinite linear complementarity problems (SDLCP) de-
termines a matrix pair (X,S) ∈ Sn × Sn satisfying

(X,S) ∈ F , X º 0, Y º 0, X • Y = 0. (1)

Here F is an n(n+1)/2-dimensional affine subspace of Sn×Sn. We call (X,S) ∈
F with X º 0 and Y º 0 a feasible solution of the SDLCP (1) and (X,S) ∈ F
with X Â 0 and Y Â 0 an interior feasible solution of the SDLCP (1) denoted
by F+ and F++, respectively.

Throughout our presentation, we assume that
[A1] F is monotone, that is (X1 −X2) • (S1 − S2) ≥ 0 for any (X1, S1) ∈ F

and (X2, S2) ∈ F .
[A2] F++ is nonempty.
Under assumptions [A1] and [A2], it is known that problem (1) has at least

one solution. Since for (X,S) ∈ Sn
+ × Sn

+, we have X • Y = 0 if and only if
XY = 0, problem (1) is equivalent to find a pair (X,S) such that

(X,S) ∈ F+, XS = 0.

It has been shown by Kojima, Shindoh and Hara [8] that the perturbed system

(X,S) ∈ F+, XS = µI. (2)

has a unique solution in F+, denoted by (Xµ, Sµ), for every µ > 0, and lim
µ→0

(Xµ, Sµ)

exists and is a solution of (1). The set {(Xµ, Sµ) : µ > 0} is called the central
path associated with (1) and plays a fundamental role in the development of
interior point algorithms for solving SDP and SDCLP. Using the square root
X1/2, (2) can also be alternatively expressed in the following symmetric form:

(X,S) ∈ F+, X1/2SX1/2 = µI (or, S1/2XS1/2 = µI).
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The path-following algorithms studied in this paper are all based on the following
centrality measures of a point for (X,S) ∈ F+ :

‖X1/2SX1/2 − µI‖F ≤ γµ.

Path following algorithms for solving (1) are based on the idea of approxi-
mately tracing the central path. Application of Newton method for computing

the solution of (2) with µ = µ̂ leads to the Newton search direction (∆̂X, ∆̂S)
which solves the linear system

X∆̂S + ∆̂XS = µ̂I −XS, (X + ∆̂X,S + ∆̂S) ∈ F . (3)

This system does not always have a solution. To overcome this bottleneck, if we
adapt the M-Z search directions to the monotone SDLCP, we can describe it as
a solution of the system of equations:

X−1/2(X∆S +∆XS)X1/2 +X1/2(∆SX + S∆X)X−1/2 = 2(µ̂I −X1/2SX1/2).
(4)

Here (X,S) ∈ F++ denotes an iterate and µ = X • S/n. It was shown in paper
[14] that the system (4) of equations above has the unique solution (∆X,∆S) ∈
Sn × Sn.

We let throughout this section that (X,S) ∈ F++ and that (∆X,∆S) is a
solution of system (4) with µ̂ = σµ for some µ > 0 and σ ∈ [0, 1]. Moreover, we
define for every α ∈ R,

X(α) ≡ X + α∆X,S(α) ≡ S + α∆S, (5)

µ(α) ≡ (1− α+ σα)µ. (6)

Lemma 2.2. For every α ∈ R, we have

X(α)S(α)−µ(α)I = (1−α)(XS−µI)+α(XS−σµI)+α(X∆S+∆XS)+α2∆X∆S.
(7)

Proof. Follows immediately from (5), (6) and (4) with µ̂ = σµ.
For a nonsingular matrix P ∈ Rn×n, consider the following operator HP :

Rn×n −→ Sn defined as

HP (M) ≡ 1

2
[PMP−1 + (PMP−1)T , ∀M ∈ Rn×n.

The operator HP has been used by Zhang [13] to characterize the central path
of SDP problems. ¤

Lemma 2.3. For every α ∈ [0, 1], we have

‖HX−1/2 [X(α)S(α)−µ(α)I]‖F ≤ (1−α)‖X1/2SX1/2−µI‖F +α2δxδs/2µ, (8)

where

δx = µ‖X−1/2∆XX−1/2‖F , δs = ‖X1/2∆SX1/2‖F . (9)
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Proof. Using (7), we can obtain

2HX−1/2 [X(α)S(α)− µ(α)I]

= 2(1− α)(X1/2SX1/2 − µI) + 2α(X1/2SX1/2 − σµI)

+ α[X−1/2(X∆S +∆XS)X1/2 +X1/2(∆SX + S∆X)X−1/2]

+ α2(X−1/2∆X∆SX1/2 +X1/2∆S∆XX−1/2)

= 2(1− α)(X1/2SX1/2 − µI)

+ α2(X−1/2∆X∆SX1/2 +X1/2∆S∆XX−1/2).

Then take Frobenius norm on both sides, we can prove the (8) holds. ¤

Lemma 2.4. Let (X,S) ∈ F++ be such that ‖X1/2SX1/2 − µI‖ ≤ µγ for some
γ ∈ [0, 1) and µ > 0. Suppose that (∆X,∆S) ∈ Sn×n×Sn×n is a solution of (4)
for W ∈ Rn×n, where W = σµI −X1/2SX1/2. Let δx = µ‖X−1/2∆XX−1/2‖F
and δs = ‖X1/2∆SX1/2‖F . Then,

δxδs ≤ 1

2
(δ2x + δ2s) ≤

‖W‖2F
2(1− γ)2

.

Proof. We let W = HX−1/2 [X∆S + ∆XS]. Using (4) and simple algebraic
manipulation, we can obtain

W = X1/2∆SX1/2 + µX−1/2∆XX−1/2 +
1

2
X−1/2∆XX−1/2(X1/2SX1/2 − µI)

+
1

2
(X1/2SX1/2 − µI)X−1/2∆XX−1/2,

from which it follows that

‖W‖F ≥ ‖X1/2∆SX1/2 + µX−1/2∆XX−1/2‖F
− ‖X1/2SX1/2 − µI‖‖X−1/2∆XX−1/2‖F

≥ (‖X1/2∆SX1/2‖2F + µ2‖X−1/2∆eXX−1/2‖2F )1/2 − γµδx/µ

≥
√
δ2x + δ2s − γδx ≥ (1− γ)

√
δ2x + δ2s ,

where the second inequality follows from the assumption that ‖X1/2SX1/2 −
µI‖ ≤ µγ and the fact that (X−1/2∆XX−1/2)•(X1/2∆SX1/2) = ∆X •∆S ≥ 0,
due to the monotonicity of F . The result now follows trivially from the last
inequality. ¤

Now we are ready to state the main result of this section.
Lemma 2.5. Suppose that (X,S) ∈ NF (µ, γ) for some γ ∈ (0, 1) and let
(∆X,∆S) ∈ Sn×n × Sn×n be the solution of (4). Then,

‖HX−1/2 [X(α)S(α)− µ(α)I]‖F ≤ {(1− α)γ + α2n(1− σ)2 + γ2

4(1− γ)2
}µ
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Proof. Follows immediately from (8), the assumption that (X,S) ∈ NF (µ, γ)
and Lemma 2.3, we can obtain

‖HX−1/2 [X(α)S(α)− µ(α)I]‖F

≤ {(1− α)γ + α2 ‖σµI −X1/2SX1/2‖2F
4(1− γ)2µ2

}µ

= {(1− α)γ + α2 ‖(σ − 1)µI‖2F + ‖µI −X1/2SX1/2‖2F
4(1− γ)2µ2

}µ

≤ {(1− α)γ + α2n(σ − 1)2 + γ2

4(1− γ)2
}µ.

The equality holds from the fact (X1/2SX1/2 − µI) • I = 0, then we complete
the proof. ¤

We start by stating two technical results. The first one is due to Monteiro
(see Lemma 2.1 of [10])and plays a crucial role in our analysis.
Lemma 2.6. Suppose that (X,S) ∈ Sn

++×Sn
++ and M ∈ Rn×n is a nonsingular

matrix. Then, for every µ ∈ R, we have

‖X1/2SX1/2 − µI‖F ≤ ‖HM(XS − µI)‖F ,
with equality holding if MXSM−1 ∈ Sn.
Lemma 2.7. Suppose V,Q ∈ Rn×n be given, and M is nonsingular which
satisfying

‖HM(V )− I‖∞ < 1, (10)

then, the matrix V is nonsingular.

Proof. Define M ≡ MVM−1/2. Condition (10) implies that M +MT Â 0, and
this clearly implies that M is nonsingular . Hence, V is also nonsingular.

When the constant Γ defined in (11) is such that Γ ≤ γ, the Theorem below
implies that the sequence {(Xk, Sk)} generated by Algorithm-I is contained in
the neighborhood NF (µ

k, γ). This Theorem is also used in the analysis of the
corrector steps of the predictor-corrector algorithm presented in the next section.

¤

Theorem 2.1. Suppose γ ∈ (0, 1) and δ ∈ [0,
√
n) be constants satisfying

Γ ≡ γ2 + δ2

4(1− γ)2
(1− δ√

n
)−1 ≤ 1. (11)

Suppose that (X,S) ∈ NF (µ, γ) for some µ > 0, and that (∆X, ,∆S) denote the
solution of system (4) with µ̂ = σµ and σ = 1− δ/

√
n. Then,

(1) (X̃, S̃) = (X+∆X,S+∆S) ∈ NF (σµ,Γ); (2) X̃ •S̃ = (1−δ/
√
n)X •S.
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Proof. It follows from Lemma 2.5, the definition of σ and [11] that for every
α ∈ [0, 1],

‖HX−1/2 [X(α)S(α)− µ(α)I]‖F ≤ {(1− α)γ + α2n(σ − 1)2 + γ2

4(1− γ)2
}µ.

≤ {(1− α)γ + α
δ2 + γ2

4(1− γ)2
}µ.

= {(1− α)γ + αΓ(1− δ/
√
n)}µ.

= {(1− α)γ + σΓα}µ,
and hence, in view of (6) and (11), we have

‖HX−1/2 [
X(α)S(α)

µ(α)
]− I‖F ≤ (1− α)γ + σΓα

1− α+ σα
≤ max{γ,Γ} < 1.

By Lemma 2.7, this implies that X(α)S(α) is nonsingular for every α ∈ (0, 1].
Hence, X(α) and S(α) are also nonsingular for every α ∈ (0, 1]. Using the fact
that (X,S) ∈ F++, (X +∆X,S +∆S) ∈ F and a simple continuity argument,
we see (X(α), S(α)) ∈ F++ ⊆ Sn

++ ×Sn
++ for every α ∈ (0, 1]. Applying Lemma

2.6 with (X,S) = (X(α), S(α)) and M = X−1/2, we conclude that for every
α ∈ (0, 1],

‖X(α)1/2S(α)X(α)1/2 − µ(α)I‖F ≤ ‖HX−1/2 [X(α)S(α)− µ(α)I]‖F .
≤ ‖X−1/2X(α)S(α)X1/2 − µ(α)I‖F
≤ {(1− α)γ + σΓα}µ.

Setting α = 1 in the last relation and using the fact that (X(1), S(1)) ∈ F++

together with (5) and (6), we conclude that (X(1), S(1)) ≡ (X+∆X,S+∆S) ∈
NF (σµ,Γ). Statement (2) follows from (6) with α = 1 and the definition of
σ. ¤

4. Predictor-corrector algorithm

In this section we give the polynomial convergence of a predictor-corrector
algorithm which is a direct extension of the LP predictor-corrector algorithm
studied by Minzuno, Todd and Ye. The algorithm considered in this section is
as follows.

ALGORITHM-I
Choose a constant 0 < τ < 1/2 satisfying the conditions of Theorem 3.1

below. Let ε ∈ (0, 1) and (X0, S0) ∈ F++ be such that (X0, S0) ∈ NF (µ0, τ),
and set k := 0.

Repeat until µk ≤ εµ0 do
1. Predictor step: Let (X,S) = (Xk, Sk) and compute the solution (∆Xk

P ,∆Sk
P )

of system (4); compute the largest θ̃ so that (X(θ), S(θ)) ∈ NF ((1 − θ)µk, 2τ)

for every θ ∈ [0, θ̃], where (X(θ), S(θ)) = (X,S) + θ(∆Xk
P ,∆Sk

P ).
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2. Corrector step: Let (X̃, S̃) = (X(θ̃), S(θ̃)) and compute the solu-

tion (∆Xk
C ,∆Sk

C) of system (4) with (X,S) = (X̃, S̃), µ̃ = (1 − θ̃)µk; set

(Xk+1, Sk+1) = (X̃, S̃) + (∆Xk
C ,∆Sk

C).
3. Increment k by 1.
End
To analyze this method, we start by showing:

Theorem 3.1. Assume that τ ∈ (0, 1/8]. Then, algorithm-I satisfies the follow-
ing statements:

(1) for every k ≥ 0, (Xk, Sk) ∈ NF (µk, τ);

(2) for every k ≥ 0, Xk • Sk ≤ (1− θ̃)kX0 • S0, where θ̃ = 1/O(
√
n);

(3) the algorithm terminates in at most O(
√
nlogε−1) iterations.

Proof. Statement (3) and the well-definedness of Algorithm-I follow directly from
(1) and (2). In turn, these two statements follow by a simple induction argument,
the two lemmas below and relation (6). ¤

The following lemma analyzes the predictor step of Algorithm-I.
Lemma 3.2. Suppose that (X,S) ∈ NF (µ, τ) for some τ ∈ (0, 1/2). Let

(∆XP ,∆SP ) denote the solution of (4) with µ̃ = 0. Let θ̃ denote the unique
positive root of the second-order polynomial p(θ) defined as

p(θ) =
τ2 + n

2(1− τ)2
θ2 + τθ − τ. (12)

Then for any θ ∈ [0, θ̃], we have:

(X(θ), S(θ)) ≡ (X + θ∆XP , S + θ∆SP ) ∈ NF ((1− θ)µ, 2τ). (13)

Moveover, θ̃ = 1/O(
√
n).

Proof. Using Lemma 2.5 with γ = τ and σ = 0, the fact that p(θ) ≤ 0 for

θ ∈ [0, θ̃], τ < 1/2 and Lemma 2.5, we conclude

‖HX−1/2 [X(θ)S(θ)− µ(θ)]‖F ≤ {(1− θ)τ +
τ2 + n

2(1− τ)2
θ2}µ

≤ 2τµ(θ) + p(θ)µ ≤ 2τµ(θ).

An argument similar to the one used in Theorem 2.1 together with (6) and the
fact that 2τ < 1 and σ = 0 can be used to show that (13) holds. The assertion

that θ̃ = 1/O(
√
n) follows by a straightforward verification. ¤

The following lemma analyzes the corrector step of Algorithm-I.
Lemma 3.3. Suppose that (X,S) ∈ NF (µ, 2τ) for some τ ∈ (0, 1/8). Let
(∆XC ,∆SC) denote the solution of (4) with µ̃ = µ. Then, we have:

(X̃ +∆XC , S̃ +∆SC) ∈ NF (µ, τ).
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Proof. Follows immediately from Theorem 2.1 with σ = 1 (or equivalently, δ =
0) and γ = 2τ , and noting that Γ defined by (11) satisfies Γ ≤ τ when τ ≤
1/8. ¤
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