POLYNOMIAL CONVERGENCE OF PREDICTOR-CORRECTOR ALGORITHMS FOR SDLCP BASED ON THE M-Z FAMILY OF DIRECTIONS ${ }^{\dagger}$

FEIXIANG CHEN* AND RUIYIN XIANG

Abstract

We establishes the polynomial convergence of a new class of path-following methods for semidefinite linear complementarity problems (SDLCP) whose search directions belong to the class of directions introduced by Monteiro [9]. Namely, we show that the polynomial iterationcomplexity bound of the well known algorithms for linear programming, namely the predictor-corrector algorithm of Mizuno and Ye, carry over to the context of SDLCP.

AMS Mathematics Subject Classification : 90C33, 65G20, 65G50.
Key words and phrases : Interior-point algorithm, polynomial complexity, path-following methods, primal dual algorithm, semidefinite linear complementarity problems.

1. Introduction

Several authors have discussed generalizations of interior-point algorithms for linear programming (LP) to the context of semidefinite programming (SDP). The landmark work in this direction is due to Nesterov and Nemirovskii [1, 2], where a general approach for using interior-point algorithms for solving convex programs is proposed, based on the notion of self-concordant functions. They show that the problem of minimizing a linear function over a convex set can be solved inpolynomial timeas long as a self-concordant barrier function for the convex set is known. On the other hand, Alizadeh [3] extends Yeprojective potential reduction algorithm for LP to SDP and argues that many known interior point algorithms for LP can also be transformed into algorithms for SDP in a mechanical way. Since then many authors have proposed interior-point algorithms for solving the SDP problems and SDLCP, including Alizadeh, Haeberly

[^0]and Overton [4], Freund [5], Helmberg, Rendl, Vanderbei and Wolkowicz [6], Kojima, Shida and Shindoh [7], Kojima, Shindoh and Hara [8], Monteiro [9,10], Monteiro and Zhang [11,12], and Zhang [13].

2. Notation and Terminology

The set of all symmetric $n \times n$ matrices is denoted by S^{n}. For $Q \in S^{n}, Q \succeq 0$ means Q is positive semidefinite and $Q \succ 0$ means Q is positive definite. The inner product between them in the vector space $R^{m \times n}$ is defined as $P \bullet Q \equiv \operatorname{Tr}$ $P^{T} Q$. The Euclidean norm and its associated operator norm are both denoted by $\|\circ\|$; The Frobenius norm of $Q \in R^{n \times n}$ is $\|Q\|_{F} \equiv(Q \bullet Q)^{1 / 2}$. For $Q, R \in R^{n \times n}$. S_{+}^{n} and S_{++}^{n} denote the set of all matrices in S^{n} which are positive semidefinite and positive definite, respectively.

3. The SDLCP problem and preliminary discussion

This section describes the SDLCP problem and the corresponding assumptions. It also contains some notations and terminology that are used throughout our presentation. Semidefinite linear complementarity problems (SDLCP) determines a matrix pair $(X, S) \in S^{n} \times S^{n}$ satisfying

$$
\begin{equation*}
(X, S) \in \mathcal{F}, \quad X \succeq 0, \quad Y \succeq 0, \quad X \bullet Y=0 \tag{1}
\end{equation*}
$$

Here \mathcal{F} is an $n(n+1) / 2$-dimensional affine subspace of $S^{n} \times S^{n}$. We call $(X, S) \in$ \mathcal{F} with $X \succeq 0$ and $Y \succeq 0$ a feasible solution of the $\operatorname{SDLCP}(1)$ and $(X, S) \in \mathcal{F}$ with $X \succ 0$ and $Y \succ 0$ an interior feasible solution of the SDLCP (1) denoted by \mathcal{F}_{+}and \mathcal{F}_{++}, respectively.

Throughout our presentation, we assume that
[A1] \mathcal{F} is monotone, that is $\left(X_{1}-X_{2}\right) \bullet\left(S_{1}-S_{2}\right) \geq 0$ for any $\left(X_{1}, S_{1}\right) \in \mathcal{F}$ and $\left(X_{2}, S_{2}\right) \in \mathcal{F}$.
[A2] \mathcal{F}_{++}is nonempty.
Under assumptions [A1] and [A2], it is known that problem (1) has at least one solution. Since for $(X, S) \in S_{+}^{n} \times S_{+}^{n}$, we have $X \bullet Y=0$ if and only if $X Y=0$, problem (1) is equivalent to find a pair (X, S) such that

$$
(X, S) \in \mathcal{F}_{+}, \quad X S=0
$$

It has been shown by Kojima, Shindoh and Hara [8] that the perturbed system

$$
\begin{equation*}
(X, S) \in \mathcal{F}_{+}, \quad X S=\mu I \tag{2}
\end{equation*}
$$

has a unique solution in \mathcal{F}_{+}, denoted by $\left(X_{\mu}, S_{\mu}\right)$, for every $\mu>0$, and $\lim _{\mu \rightarrow 0}\left(X_{\mu}, S_{\mu}\right)$ exists and is a solution of (1). The set $\left\{\left(X_{\mu}, S_{\mu}\right): \mu>0\right\}$ is called the central path associated with (1) and plays a fundamental role in the development of interior point algorithms for solving SDP and SDCLP. Using the square root $X^{1 / 2},(2)$ can also be alternatively expressed in the following symmetric form:

$$
(X, S) \in \mathcal{F}_{+}, \quad X^{1 / 2} S X^{1 / 2}=\mu I \quad\left(o r, S^{1 / 2} X S^{1 / 2}=\mu I\right)
$$

The path-following algorithms studied in this paper are all based on the following centrality measures of a point for $(X, S) \in \mathcal{F}_{+}$:

$$
\left\|X^{1 / 2} S X^{1 / 2}-\mu I\right\|_{F} \leq \gamma \mu
$$

Path following algorithms for solving (1) are based on the idea of approximately tracing the central path. Application of Newton method for computing the solution of (2) with $\mu=\hat{\mu}$ leads to the Newton search direction $(\widehat{\Delta X}, \widehat{\Delta S})$ which solves the linear system

$$
\begin{equation*}
X \widehat{\Delta S}+\widehat{\Delta X} S=\hat{\mu} I-X S, \quad(X+\widehat{\Delta X}, S+\widehat{\Delta S}) \in \mathcal{F} \tag{3}
\end{equation*}
$$

This system does not always have a solution. To overcome this bottleneck, if we adapt the M-Z search directions to the monotone SDLCP, we can describe it as a solution of the system of equations:
$X^{-1 / 2}(X \Delta S+\Delta X S) X^{1 / 2}+X^{1 / 2}(\Delta S X+S \Delta X) X^{-1 / 2}=2\left(\hat{\mu} I-X^{1 / 2} S X^{1 / 2}\right)$.
Here $(X, S) \in \mathcal{F}_{++}$denotes an iterate and $\mu=X \bullet S / n$. It was shown in paper [14] that the system (4) of equations above has the unique solution $(\Delta X, \Delta S) \in$ $S^{n} \times S^{n}$.

We let throughout this section that $(X, S) \in \mathcal{F}_{++}$and that $(\Delta X, \Delta S)$ is a solution of system (4) with $\hat{\mu}=\sigma \mu$ for some $\mu>0$ and $\sigma \in[0,1]$. Moreover, we define for every $\alpha \in R$,

$$
\begin{gather*}
X(\alpha) \equiv X+\alpha \Delta X, S(\alpha) \equiv S+\alpha \Delta S, \tag{5}\\
\mu(\alpha) \equiv(1-\alpha+\sigma \alpha) \mu . \tag{6}
\end{gather*}
$$

Lemma 2.2. For every $\alpha \in R$, we have
$X(\alpha) S(\alpha)-\mu(\alpha) I=(1-\alpha)(X S-\mu I)+\alpha(X S-\sigma \mu I)+\alpha(X \Delta S+\Delta X S)+\alpha^{2} \Delta X \Delta S$.

Proof. Follows immediately from (5), (6) and (4) with $\hat{\mu}=\sigma \mu$.
For a nonsingular matrix $P \in R^{n \times n}$, consider the following operator H_{P} : $R^{n \times n} \longrightarrow S^{n}$ defined as

$$
H_{P}(M) \equiv \frac{1}{2}\left[P M P^{-1}+\left(P M P^{-1}\right)^{T}, \quad \forall M \in R^{n \times n}\right.
$$

The operator H_{P} has been used by Zhang [13] to characterize the central path of SDP problems.

Lemma 2.3. For every $\alpha \in[0,1]$, we have

$$
\begin{equation*}
\left\|H_{X^{-1 / 2}}[X(\alpha) S(\alpha)-\mu(\alpha) I]\right\|_{F} \leq(1-\alpha)\left\|X^{1 / 2} S X^{1 / 2}-\mu I\right\|_{F}+\alpha^{2} \delta_{x} \delta_{s} / 2 \mu \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta_{x}=\mu\left\|X^{-1 / 2} \Delta X X^{-1 / 2}\right\|_{F}, \quad \delta_{s}=\left\|X^{1 / 2} \Delta S X^{1 / 2}\right\|_{F} \tag{9}
\end{equation*}
$$

Proof. Using (7), we can obtain

$$
\begin{aligned}
2 H_{X-1 / 2}[& X(\alpha) S(\alpha)-\mu(\alpha) I] \\
= & 2(1-\alpha)\left(X^{1 / 2} S X^{1 / 2}-\mu I\right)+2 \alpha\left(X^{1 / 2} S X^{1 / 2}-\sigma \mu I\right) \\
& +\alpha\left[X^{-1 / 2}(X \Delta S+\Delta X S) X^{1 / 2}+X^{1 / 2}(\Delta S X+S \Delta X) X^{-1 / 2}\right] \\
& +\alpha^{2}\left(X^{-1 / 2} \Delta X \Delta S X^{1 / 2}+X^{1 / 2} \Delta S \Delta X X^{-1 / 2}\right) \\
= & 2(1-\alpha)\left(X^{1 / 2} S X^{1 / 2}-\mu I\right) \\
& +\alpha^{2}\left(X^{-1 / 2} \Delta X \Delta S X^{1 / 2}+X^{1 / 2} \Delta S \Delta X X^{-1 / 2}\right)
\end{aligned}
$$

Then take Frobenius norm on both sides, we can prove the (8) holds.
Lemma 2.4. Let $(X, S) \in \mathcal{F}_{++}$be such that $\left\|X^{1 / 2} S X^{1 / 2}-\mu I\right\| \leq \mu \gamma$ for some $\gamma \in[0,1)$ and $\mu>0$. Suppose that $(\Delta X, \Delta S) \in S^{n \times n} \times S^{n \times n}$ is a solution of (4) for $\mathcal{W} \in R^{n \times n}$, where $\mathcal{W}=\sigma \mu I-X^{1 / 2} S X^{1 / 2}$. Let $\delta_{x}=\mu\left\|X^{-1 / 2} \Delta X X^{-1 / 2}\right\|_{F}$ and $\delta_{s}=\left\|X^{1 / 2} \Delta S X^{1 / 2}\right\|_{F}$. Then,

$$
\delta_{x} \delta_{s} \leq \frac{1}{2}\left(\delta_{x}^{2}+\delta_{s}^{2}\right) \leq \frac{\|\mathcal{W}\|_{F}^{2}}{2(1-\gamma)^{2}}
$$

Proof. We let $\mathcal{W}=H_{X^{-1 / 2}}[X \Delta S+\Delta X S]$. Using (4) and simple algebraic manipulation, we can obtain

$$
\mathcal{W}=X^{1 / 2} \Delta S X^{1 / 2}+\mu X^{-1 / 2} \Delta X X^{-1 / 2}+\frac{1}{2} X^{-1 / 2} \Delta X X^{-1 / 2}\left(X^{1 / 2} S X^{1 / 2}-\mu I\right)
$$

$$
+\frac{1}{2}\left(X^{1 / 2} S X^{1 / 2}-\mu I\right) X^{-1 / 2} \Delta X X^{-1 / 2}
$$

from which it follows that

$$
\begin{aligned}
\|\mathcal{W}\|_{F} \geq & \left\|X^{1 / 2} \Delta S X^{1 / 2}+\mu X^{-1 / 2} \Delta X X^{-1 / 2}\right\|_{F} \\
& -\left\|X^{1 / 2} S X^{1 / 2}-\mu I\right\|\left\|X^{-1 / 2} \Delta X X^{-1 / 2}\right\|_{F} \\
\geq & \left(\left\|X^{1 / 2} \Delta S X^{1 / 2}\right\|_{F}^{2}+\mu^{2}\left\|X^{-1 / 2} \Delta e X X^{-1 / 2}\right\|_{F}^{2}\right)^{1 / 2}-\gamma \mu \delta_{x} / \mu \\
\geq & \sqrt{\delta_{x}^{2}+\delta_{s}^{2}}-\gamma \delta_{x} \geq(1-\gamma) \sqrt{\delta_{x}^{2}+\delta_{s}^{2}}
\end{aligned}
$$

where the second inequality follows from the assumption that $\| X^{1 / 2} S X^{1 / 2}-$ $\mu I \| \leq \mu \gamma$ and the fact that $\left(X^{-1 / 2} \Delta X X^{-1 / 2}\right) \bullet\left(X^{1 / 2} \Delta S X^{1 / 2}\right)=\Delta X \bullet \Delta S \geq 0$, due to the monotonicity of \mathcal{F}. The result now follows trivially from the last inequality.

Now we are ready to state the main result of this section.
Lemma 2.5. Suppose that $(X, S) \in N_{F}(\mu, \gamma)$ for some $\gamma \in(0,1)$ and let $(\Delta X, \Delta S) \in S^{n \times n} \times S^{n \times n}$ be the solution of (4). Then,

$$
\left\|H_{X^{-1 / 2}}[X(\alpha) S(\alpha)-\mu(\alpha) I]\right\|_{F} \leq\left\{(1-\alpha) \gamma+\alpha^{2} \frac{n(1-\sigma)^{2}+\gamma^{2}}{4(1-\gamma)^{2}}\right\} \mu
$$

Proof. Follows immediately from (8), the assumption that $(X, S) \in N_{F}(\mu, \gamma)$ and Lemma 2.3, we can obtain

$$
\begin{aligned}
\| H_{X^{-1 / 2}} & {[X(\alpha) S(\alpha)-\mu(\alpha) I] \|_{F} } \\
& \leq\left\{(1-\alpha) \gamma+\alpha^{2} \frac{\left\|\sigma \mu I-X^{1 / 2} S X^{1 / 2}\right\|_{F}^{2}}{4(1-\gamma)^{2} \mu^{2}}\right\} \mu \\
& =\left\{(1-\alpha) \gamma+\alpha^{2} \frac{\|(\sigma-1) \mu I\|_{F}^{2}+\left\|\mu I-X^{1 / 2} S X^{1 / 2}\right\|_{F}^{2}}{4(1-\gamma)^{2} \mu^{2}}\right\} \mu \\
& \leq\left\{(1-\alpha) \gamma+\alpha^{2} \frac{n(\sigma-1)^{2}+\gamma^{2}}{4(1-\gamma)^{2}}\right\} \mu .
\end{aligned}
$$

The equality holds from the fact $\left(X^{1 / 2} S X^{1 / 2}-\mu I\right) \bullet I=0$, then we complete the proof.

We start by stating two technical results. The first one is due to Monteiro (see Lemma 2.1 of [10])and plays a crucial role in our analysis.
Lemma 2.6. Suppose that $(X, S) \in S_{++}^{n} \times S_{++}^{n}$ and $\mathcal{M} \in R^{n \times n}$ is a nonsingular matrix. Then, for every $\mu \in R$, we have

$$
\left\|X^{1 / 2} S X^{1 / 2}-\mu I\right\|_{F} \leq\left\|H_{\mathcal{M}}(X S-\mu I)\right\|_{F},
$$

with equality holding if $\mathcal{M} X S \mathcal{M}^{-1} \in S^{n}$.
Lemma 2.7. Suppose $V, Q \in R^{n \times n}$ be given, and \mathcal{M} is nonsingular which satisfying

$$
\begin{equation*}
\left\|H_{\mathcal{M}}(V)-I\right\|_{\infty}<1 \tag{10}
\end{equation*}
$$

then, the matrix V is nonsingular.
Proof. Define $M \equiv \mathcal{M} V \mathcal{M}^{-1} / 2$. Condition (10) implies that $M+M^{T} \succ 0$, and this clearly implies that M is nonsingular. Hence, V is also nonsingular.

When the constant Γ defined in (11) is such that $\Gamma \leq \gamma$, the Theorem below implies that the sequence $\left\{\left(X^{k}, S^{k}\right)\right\}$ generated by Algorithm-I is contained in the neighborhood $N_{F}\left(\mu^{k}, \gamma\right)$. This Theorem is also used in the analysis of the corrector steps of the predictor-corrector algorithm presented in the next section.

Theorem 2.1. Suppose $\gamma \in(0,1)$ and $\delta \in[0, \sqrt{n})$ be constants satisfying

$$
\begin{equation*}
\Gamma \equiv \frac{\gamma^{2}+\delta^{2}}{4(1-\gamma)^{2}}\left(1-\frac{\delta}{\sqrt{n}}\right)^{-1} \leq 1 \tag{11}
\end{equation*}
$$

Suppose that $(X, S) \in N_{F}(\mu, \gamma)$ for some $\mu>0$, and that $(\Delta X, \Delta S)$ denote the solution of system (4) with $\hat{\mu}=\sigma \mu$ and $\sigma=1-\delta / \sqrt{n}$. Then,
(1) $(\widetilde{X}, \widetilde{S})=(X+\Delta X, S+\Delta S) \in N_{F}(\sigma \mu, \Gamma)$; (2) $\widetilde{X} \bullet \widetilde{S}=(1-\delta / \sqrt{n}) X \bullet S$.

Proof. It follows from Lemma 2.5, the definition of σ and [11] that for every $\alpha \in[0,1]$,

$$
\begin{aligned}
\left\|H_{X-1 / 2}[X(\alpha) S(\alpha)-\mu(\alpha) I]\right\|_{F} & \leq\left\{(1-\alpha) \gamma+\alpha^{2} \frac{n(\sigma-1)^{2}+\gamma^{2}}{4(1-\gamma)^{2}}\right\} \mu . \\
& \leq\left\{(1-\alpha) \gamma+\alpha \frac{\delta^{2}+\gamma^{2}}{4(1-\gamma)^{2}}\right\} \mu . \\
& =\{(1-\alpha) \gamma+\alpha \Gamma(1-\delta / \sqrt{n})\} \mu . \\
& =\{(1-\alpha) \gamma+\sigma \Gamma \alpha\} \mu
\end{aligned}
$$

and hence, in view of (6) and (11), we have

$$
\left\|H_{X^{-1 / 2}}\left[\frac{X(\alpha) S(\alpha)}{\mu(\alpha)}\right]-I\right\|_{F} \leq \frac{(1-\alpha) \gamma+\sigma \Gamma \alpha}{1-\alpha+\sigma \alpha} \leq \max \{\gamma, \Gamma\}<1
$$

By Lemma 2.7, this implies that $X(\alpha) S(\alpha)$ is nonsingular for every $\alpha \in(0,1]$. Hence, $X(\alpha)$ and $S(\alpha)$ are also nonsingular for every $\alpha \in(0,1]$. Using the fact that $(X, S) \in \mathcal{F}_{++},(X+\Delta X, S+\Delta S) \in \mathcal{F}$ and a simple continuity argument, we see $(X(\alpha), S(\alpha)) \in \mathcal{F}_{++} \subseteq S_{++}^{n} \times S_{++}^{n}$ for every $\alpha \in(0,1]$. Applying Lemma 2.6 with $(X, S)=(X(\alpha), S(\alpha))$ and $\mathcal{M}=X^{-1 / 2}$, we conclude that for every $\alpha \in(0,1]$,

$$
\begin{aligned}
\left\|X(\alpha)^{1 / 2} S(\alpha) X(\alpha)^{1 / 2}-\mu(\alpha) I\right\|_{F} & \leq\left\|H_{X^{-1 / 2}}[X(\alpha) S(\alpha)-\mu(\alpha) I]\right\|_{F} . \\
& \leq\left\|X^{-1 / 2} X(\alpha) S(\alpha) X^{1 / 2}-\mu(\alpha) I\right\|_{F} \\
& \leq\{(1-\alpha) \gamma+\sigma \Gamma \alpha\} \mu .
\end{aligned}
$$

Setting $\alpha=1$ in the last relation and using the fact that $(X(1), S(1)) \in \mathcal{F}_{++}$ together with (5) and (6), we conclude that $(X(1), S(1)) \equiv(X+\Delta X, S+\Delta S) \in$ $N_{F}(\sigma \mu, \Gamma)$. Statement (2) follows from (6) with $\alpha=1$ and the definition of σ.

4. Predictor-corrector algorithm

In this section we give the polynomial convergence of a predictor-corrector algorithm which is a direct extension of the LP predictor-corrector algorithm studied by Minzuno, Todd and Ye. The algorithm considered in this section is as follows.

ALGORITHM-I

Choose a constant $0<\tau<1 / 2$ satisfying the conditions of Theorem 3.1 below. Let $\varepsilon \in(0,1)$ and $\left(X^{0}, S^{0}\right) \in \mathcal{F}_{++}$be such that $\left(X^{0}, S^{0}\right) \in N_{F}\left(\mu_{0}, \tau\right)$, and set $k:=0$.

Repeat until $\mu^{k} \leq \varepsilon \mu_{0}$ do

1. Predictor step: Let $(X, S)=\left(X^{k}, S^{k}\right)$ and compute the solution $\left(\Delta X_{P}^{k}, \Delta S_{P}^{k}\right)$ of system (4); compute the largest $\widetilde{\theta}$ so that $(X(\theta), S(\theta)) \in N_{F}\left((1-\theta) \mu_{k}, 2 \tau\right)$ for every $\theta \in[0, \widetilde{\theta}]$, where $(X(\theta), S(\theta))=(X, S)+\theta\left(\Delta X_{P}^{k}, \Delta S_{P}^{k}\right)$.
2. Corrector step: Let $(\widetilde{X}, \widetilde{S})=(X(\widetilde{\theta}), S(\widetilde{\theta}))$ and compute the solution $\left(\Delta X_{C}^{k}, \Delta S_{C}^{k}\right)$ of system (4) with $(X, S)=(\widetilde{X}, \widetilde{S}), \widetilde{\mu}=(1-\widetilde{\theta}) \mu^{k}$; set $\left(X^{k+1}, S^{k+1}\right)=(\widetilde{X}, \widetilde{S})+\left(\Delta X_{C}^{k}, \Delta S_{C}^{k}\right)$.
3. Increment k by 1.

End
To analyze this method, we start by showing:
Theorem 3.1. Assume that $\tau \in(0,1 / 8]$. Then, algorithm-I satisfies the following statements:
(1) for every $k \geq 0,\left(X^{k}, S^{k}\right) \in N_{F}\left(\mu_{k}, \tau\right)$;
(2) for every $k \geq 0, X^{k} \bullet S^{k} \leq(1-\widetilde{\theta})^{k} X^{0} \bullet S^{0}$, where $\widetilde{\theta}=1 / \mathcal{O}(\sqrt{n})$;
(3) the algorithm terminates in at most $\mathcal{O}\left(\sqrt{n} \log \varepsilon^{-1}\right)$ iterations.

Proof. Statement (3) and the well-definedness of Algorithm-I follow directly from (1) and (2). In turn, these two statements follow by a simple induction argument, the two lemmas below and relation (6).

The following lemma analyzes the predictor step of Algorithm-I.
Lemma 3.2. Suppose that $(X, S) \in N_{F}(\mu, \tau)$ for some $\tau \in(0,1 / 2)$. Let $\left(\Delta X_{P}, \Delta S_{P}\right)$ denote the solution of (4) with $\widetilde{\mu}=0$. Let $\widetilde{\theta}$ denote the unique positive root of the second-order polynomial $p(\theta)$ defined as

$$
\begin{equation*}
p(\theta)=\frac{\tau^{2}+n}{2(1-\tau)^{2}} \theta^{2}+\tau \theta-\tau \tag{12}
\end{equation*}
$$

Then for any $\theta \in[0, \widetilde{\theta}]$, we have:

$$
\begin{equation*}
(X(\theta), S(\theta)) \equiv\left(X+\theta \Delta X_{P}, S+\theta \Delta S_{P}\right) \in N_{F}((1-\theta) \mu, 2 \tau) \tag{13}
\end{equation*}
$$

Moveover, $\widetilde{\theta}=1 / \mathcal{O}(\sqrt{n})$.
Proof. Using Lemma 2.5 with $\gamma=\tau$ and $\sigma=0$, the fact that $p(\theta) \leq 0$ for $\theta \in[0, \widetilde{\theta}], \tau<1 / 2$ and Lemma 2.5, we conclude

$$
\begin{aligned}
\left\|H_{X^{-1 / 2}}[X(\theta) S(\theta)-\mu(\theta)]\right\|_{F} & \leq\left\{(1-\theta) \tau+\frac{\tau^{2}+n}{2(1-\tau)^{2}} \theta^{2}\right\} \mu \\
& \leq 2 \tau \mu(\theta)+p(\theta) \mu \leq 2 \tau \mu(\theta) .
\end{aligned}
$$

An argument similar to the one used in Theorem 2.1 together with (6) and the fact that $2 \tau<1$ and $\sigma=0$ can be used to show that (13) holds. The assertion that $\widetilde{\theta}=1 / \mathcal{O}(\sqrt{n})$ follows by a straightforward verification.

The following lemma analyzes the corrector step of Algorithm-I.
Lemma 3.3. Suppose that $(X, S) \in N_{F}(\mu, 2 \tau)$ for some $\tau \in(0,1 / 8)$. Let $\left(\Delta X_{C}, \Delta S_{C}\right)$ denote the solution of (4) with $\widetilde{\mu}=\mu$. Then, we have:

$$
\left(\widetilde{X}+\Delta X_{C}, \widetilde{S}+\Delta S_{C}\right) \in N_{F}(\mu, \tau)
$$

Proof. Follows immediately from Theorem 2.1 with $\sigma=1$ (or equivalently, $\delta=$ 0) and $\gamma=2 \tau$, and noting that Γ defined by (11) satisfies $\Gamma \leq \tau$ when $\tau \leq$ $1 / 8$.

References

1. Y. E. Nesterod and A. S. Nemirovskii, A general approach to the design of optimal methods for smooth convex functions minimization, Ekonomika i Matem. Metody, 24 (1998), 509517(in Russian). (English transl: Matekon: translations of Russian and East European Math. Economics.)
2. Y. E. Nesterod and A. S. Nemirovskii, Interior Point methods in Convex Programming: Theory and Applications, SIAM, Philadelphia, 1994.
3. F. Alizadeh, Interior point methods in semidefinite programming with applications to combinatorial optimization, SIAM J. Optim. 5(1995), 13-51.
4. F Alizadeh, JPA Haeberly, ML Overton, Primal-dual interior-point methods for semidefinite programming: convergence rates, stability and numerical results. SIAM Journal on Optimization. Vol.8(1998), No.3, 746-768.
5. Freund, R.M, Complexity of an algorithm for finding an approximate solution of a semidefinite program with no regularity condition. Working paper OR 302-94. Operations Research Center, Massachusetts Institute of Technology, Cambridge, December, (1994).
6. Helmber.C, Rendl.F, Vanderbei R.J, Wolkowicz, An interior point method for semidefinite programming, SIAM Journal on Optimization. 1996, 342-361.
7. Kojima.M, Shida.M, Shindoh.S, Local convergence of predictor-corrector infeasible-interiorpoint algorithms for SDPs and SDLCPs. Mathematical Programming. 1998, 129-160.
8. M. Kojima S. Shindoh S. Hara, Interior-point methods for the monotone semidefinite linear complementarity problem in symmetric matrices. SIAM Journal on Optimization , vol.7(1997), No.1, 86-125.
9. R. D. C. Monteiro, Primal-Dual Path-Following Algorithms for Semidefinite Programming, SIAM Journal on Optimization, Vol.7(1997), No.3, 663-678.
10. R. D. C. Monteiro, Polynomial convergence of primal-dual algorithms for semidefinite programming based on the Monteiro and Zhang family of directions, SIAM Journal on Optimization, Vol.8(1998), 797-812.
11. R. D. C. Monteiro and Y. Zhang, A unified analysis for a class of path-following primaldual interior-point algorithms for semidefinite programming, Math.program, 1998, 281-299.
12. R. D. C. Monteiro and Y. Zhang, Polynomial convergence of a new family of primaldual algorithms for semidefinite programming, SIAM Journal on Optimization, Vol.9(1999), No.3, 551-577.
13. Yin Zhang, On extending some primal-dual interior-point algorithms from linear programming to semidefinite programming. SIAM Journal on Optimization. Vol.8(1998), No.2, 365-386.
14. M Shida, S Shindoh, M Kojima, Existence of search directions in interior-point algorithms for the $S D P$ and the monotone $S D L C P$. SIAM Journal on Optimization, Vol.8(1998), No.2, 387-396.

Feixiang Chen received M.Sc. from Xi'an Jiaotong University. Since 2009 he has been teaching at Chongqing Three Gorges University. His research interests include numerical optimization and mathematical programming.
College of mathematics and computer science, Chongqing Three-Gorges University, Wanzhou, Chongqing, 404000, P.R.China.
e-mail: cfx2002@126.com

Ruiyin Xiang received M.Sc. from Chongqing University. Since 1995 he has been teaching at Chongqing Three Gorges University. His research interests are finite element and boundary element.
College of mathematics and computer science, Chongqing Three-Gorges University, Wanzhou, Chongqing, 404000, P.R.China.
e-mail: xiangry@163.com

[^0]: Received January 10, 2011. Revised February 26, 2011. Accepted March 8, 2011. ${ }^{*}$ Corresponding author. ${ }^{\dagger}$ This work was supported by Natural Science Foundation of Chongqing Municipal Education Commission(No.KJ091104 and KJ101108).
 © 2011 Korean SIGCAM and KSCAM.

