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STABILITY OF THE MILSTEIN METHOD FOR STOCHASTIC

DIFFERENTIAL EQUATIONS WITH JUMPS†

LIN HU∗ AND SIQING GAN

Abstract. In this paper the Milstein method is proposed to approximate
the solution of a linear stochastic differential equation with Poisson-driven
jumps. The strong Milstein method and the weak Milstein method are
shown to capture the mean square stability of the system. Furthermore
using some technique, our result shows that these two kinds of Milstein
methods can well reproduce the stochastically asymptotical stability of the
system for all sufficiently small time-steps. Some numerical experiments
are given to demonstrate the conclusions.
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1. Introduction

Stochastic differential equations (SDEs) with jumps have many important ap-
plications in the areas such as biology, finance, economics and so on. In general,
SDEs with jumps have no explicit solutions. Thus, it is necessary to develop nu-
merical methods and to study the properties of these numerical schemes. There
is a vast literature on the stability of numerical methods for SDEs, see, for ex-
ample, Higham [5], Milstein [12], Higham et al.[7] and for stochastic differential
delay equations (SDDEs), for example, see [17, 9]. There are some results con-
cerned with the weak approximate schemes for SDEs, see, for example, Saito
and Mistui [14], Burrage et al. [2], Cao and Liu [4]. Recently, there has been
some work done about the numerical schemes for SDEs with jumps [6, 3] and
SDDEs with jumps [10, 15].
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However, the numerical methods in [5, 7, 6, 3, 10, 15] converge with strong
order of one half. In this paper, we will focus on the Milstein method which
has strong convergence rate of one, see, for example, [11]. There is an extensive
literature on the numerical analysis of the Milstein method (e.g., [16, 13]). Our
aim in this work is to investigate the mean square stability and the asymptotical
stability of the Milstein method for SDEs with jumps.

In this paper, we consider the linear, scalar SDEs with jumps:

dx(t) = ax(t−)dt+ bx(t−)dW (t) + cx(t−)dN(t) (1)

with x(0) = x0. Here t > 0, x0 6= 0 with probability one, x(t−) denotes
lims→t− x(s). Here, W (t) is a scalar Brownian motion and N(t) is a scalar
Poisson process with intensity λ(λ > 0), both defined on an appropriate complete
probability space (Ω, F , {Ft}t>0,P), with a filtration {Ft}t>0 satisfying the
usual conditions(i.e. it is increasing and right-continuous while F0 contains all
P-null sets). W (t) is independent of N(t). The coefficients a, b, c ∈ R and c 6= 0
(if c = 0, the model reduces to a SDEs without jumps).

The main results is organized as follows. Sections 2 and 3 deal with the mean
square stabilities of the strong Milstein method and the weak Milstein method
respectively. In Sections 4 and 5, we apply our asymptotic stability analysis to
the strong Milstein method and the weak Milstein method. In addition, some
numerical results are presented to confirm the theoretical results in Section 6.

2. mean square stability of the strong Milstein method

Given a stepsize h > 0, the strong Milstein scheme [11] is proposed for (1) as
follows.

Yn+1 = [1 + (a− 1
2b

2)h+ b∆Wn + 1
2b

2(∆Wn)
2 + 1

2 (2c− c2)∆Nn

+bc∆Wn∆Nn + 1
2c

2(∆Nn)
2]Yn

(2)

with Y (0) = x0. Here Yn is an approximation to x(tn) with tn = nh, ∆Wn =
W (tn+1)−W (tn), ∆Nn = N(tn+1)−N(tn) and ∆Wn is independent of ∆Nn.

To begin with, we cite here a linear mean square stability result of underlying
the system (1)

Lemma 2.1 ([6]). The analytical solution of the system (1) is mean square
stable, that is to say, limt→∞ E(x(t))2 = 0, if and only if

2a+ b2 + λc(2 + c) < 0. (3)

Given parameters a, b, c, λ and stepsize h, we say the Milstein method is
mean-square stable if limn→∞ E(Yn)

2 = 0 for any Y0. We are now in a position
to state our result on the mean-square stability of the strong Milstein method.

Theorem 2.1. Assume the condition (3) is satisfied. Then the strong Milstein
method (2) is mean square stable.
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Proof. It follows from (2) that

EY 2
n+1

= {1 + (a− 1
2b

2)2h2 + b2E(∆Wn)
2 + 1

4b
4E(∆Wn)

4 + 1
4 (2c− c2)2E(∆Nn)

2

+b2c2E[(∆Wn)
2(∆Nn)

2] + 1
4c

4E(∆Nn)
4 + 2(a− 1

2b
2)h+ 2bE∆Wn

+b2E(∆Wn)
2 + (2c− c2)E∆Nn + 2bcE[∆Wn∆Nn] + c2E(∆Nn)

2

+2(a− 1
2b

2)hbE∆Wn + (a− 1
2b

2)hb2E(∆Wn)
2 + (a− 1

2b
2)(2c− c2)hE∆Nn

+2(a− 1
2b

2)bchE[∆Wn∆Nn] + (a− 1
2b

2)c2hE(∆Nn)
2 + b3E(∆Wn)

3

+(2c− c2)bE[∆Wn∆Nn] + 2b2cE[(∆Wn)
2∆Nn] + c2bE[(∆Nn)

2∆Wn]
+ 1

2b
2(2c− c2)E[(∆Wn)

2∆Nn] + b3cE[(∆Wn)
3∆Nn] +

1
2b

2c2E[(∆Wn)
2(∆Nn)

2]
+(2c− c2)bcE[∆Wn(∆Nn)

2] + 1
2c

2(2c− c2)E(∆Nn)
3 + bc3E[∆Wn(∆Nn)

3]}EY 2
n

= [1 +R1(a, b, c, λ)h+R2(a, b, c, λ)h
2 +R3(a, b, c, λ)h

3 +R4(a, b, c, λ)h
4]EY 2

n ,

where R1(a, b, c, λ) = 2a+ b2+λc(c+2), R3(a, b, c, λ) = b2c2λ2+ c4λ3+ac2λ2+
c3λ3, R2(a, b, c, λ) =

1
2b

4 + a2 + b2c2λ+ 1
2λ

2c4 + 2λ2c2 + 2b2cλ+ 2acλ+ 2c3λ2,

R4(a, b, c, λ) =
1
4c

4λ4. Here the fact has been used that E(∆Wn) = E(∆Wn)
3 =

0, E(∆Wn)
2 = h, E(∆Wn)

4 = 3h2, and the Poisson increments satisfy E(∆Nn) =
λh, E(∆Nn)

2 = λh(1 + λh), E(∆Nn)
3 = λh + 3λ2h2 + λ3h3, E(∆Nn)

4 =
λh+ 7λ2h2 + 6λ3h3 + λ4h4. Thus the numerical solution is mean square stable
if and only if

R1(a, b, c, λ)h+R2(a, b, c, λ)h
2 +R3(a, b, c, λ)h

3 +R4(a, b, c, λ)h
4 < 0.

That is to say

R1(a, b, c, λ) +R2(a, b, c, λ)h+R3(a, b, c, λ)h
2 +R4(a, b, c, λ)h

3 < 0.

Letting ψ(h) = R1(a, b, c, λ) + R2(a, b, c, λ)h+ R3(a, b, c, λ)h
2 + R4(a, b, c, λ)h

3,
by (3), we easily obtain ψ(0) < 0. Because of the continuity of ψ with respect
to h, there must exist a h0(a, b, c, λ) ∈ (0, µ), µ is small enough, such that for
any h ∈ (0, h0(a, b, c, λ))

ψ(h) < 0.

The proof is completed. ¤

3. Mean square stability of the weak Milstein method

Applying the weak Milstein method, which is equipped with two-point random
variables for the driving process, to system (1) leads to

Yn+1 = [1 + (a− 1
2b

2)h+ b∆̂Wn + 1
2b

2(∆̂Wn)
2 + 1

2 (2c− c2)∆̂Nn

+bc∆̂Wn∆̂Nn + 1
2c

2(∆̂Nn)
2]Yn

(4)

with Y (0) = x0. Here P(∆̂Wn =
√
h) = P(∆̂Wn = −

√
h) = 1/2 and P(∆̂Nn =

0) = 1− λh, P(∆̂Nn = 1) = λh.
Now we give the main theorem in this section.

Theorem 3.1. Assume the condition (3) is satisfied. Then the weak Milstein
method (4) is mean square stable.
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Proof. It follows from (4) that

EY 2
n+1

= [1 + R̂1(a, b, c, λ)h+ R̂2(a, b, c, λ)h2]EY 2
n ,

(5)

where R̂1(a, b, c, λ) = 2(a− 1
2b

2)+λc(2+ c), R̂2(a, b, c, λ) = a2+ b2c2λ+2acλ+

2b2cλ. Here the fact has been used that E(∆̂Wn) = E(∆̂Wn)
3 = 0, E(∆̂Wn)

2 =

h, E(∆̂Wn)
4 = h2, E(∆̂Nn)

i = λh(i = 1, · · · , 4). Hence the weak Milstein
method is mean square stable if and only if

R̂1(a, b, c, λ) + R̂2(a, b, c, λ)h < 0. (6)

If R̂2(a, b, c, λ) ≤ 0, by (3), then (6) holds for all h ∈ (0, 1/λ). If R̂2(a, b, c, λ) > 0,

by (3), then (6) holds for all h ∈ (0,− R̂1(a,b,c,λ)

R̂2(a,b,c,λ)
). Thus, there exists ĥ0(a, b, c, λ) =

min{ 1
λ , − R̂1(a,b,c,λ)

R̂2(a,b,c,λ)
}, for any h ∈ (0, ĥ0(a, b, c, λ)), the inequality (6) holds. This

completes the proof. ¤

Theorem 2.1 and Theorem 3.1 show that the strong Milstein method (2)
and the weak Milstein method (4) can preserve the mean square stability of the
system (1).

4. Asymptotic stability of the strong Milstein method

In Sections 2 and 3, we consider the mean square stabilities of the two kinds
of Milstein methods. This section is concerned with the asymptotic stability.
We begin by giving the necessary and sufficient condition for the stochastically
asymptotical stability in the large (hereafter, asymptotical stability) of the sys-
tem (1).

Lemma 4.1 ([3]). The system (1) is stochastically asymptotically stable in the
large (hereafter, asymptotically stable) if and only if

a− 1

2
b2 + λ ln |1 + c| < 0, (7)

where ln |1 + c| = −∞, as c = −1. Thus when c = −1, under the condition (7),
the system (1) is asymptotically stable for any a, b ∈ R.

We say the Milstein method (2) are asymptotically stable for a particular
choice of a, b, c, λ and h if limn→∞ |Yn| = 0, with probability one, for any Y0.

We now establish Lemma 4.2, which will play a key role in the proof of
Theorem 4.1. In the similar way as the Theorem 3.2 in [1] we can obtain
Lemma 4.2.

Lemma 4.2. Let ξ be a standard Normal random variable. Then, for the inte-
grable function ϕ : R→ R, we have

E[ϕ(1 + (a− 1
2b

2)h+ b
√
hξ + 1

2b
2hξ2)]

= ϕ(1) + ϕ
′
(1)((a− 1

2b
2)h+ 1

2b
2h) + ϕ

′′
(1)
2 b2h+ o(h),

(8)
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where a, b ∈ R, h → 0.

Proof. Consider the function ϕ, such that there exists σ > 0 and the integral
function ϕ̃ : R→ R satisfying

(1) ϕ̃ ≡ ϕ on A = [1− σ, 1 + σ],

(2) ϕ̃ ∈ C3(R) and |ϕ̃′′′
(x)| ≤ H for some H and all x ∈ R,

(3)
∫
R |ϕ− ϕ̃|dx ≤ K < +∞ for some K.

The following proof is divided into two parts:
Part 1: We proves formula (8) for ϕ̃(1 + (a − 1

2b
2)h + b

√
hξ + 1

2b
2hξ2). Using

Taylor expansion gives

ϕ̃(1 + x) = ϕ̃(1) + ϕ̃
′
(1)x+

ϕ̃
′′
(1)

2
x2 +

ϕ̃
′′′
(η)

6
x3,

where η lying between 1 and 1 + x.
Substituting x = (a− 1

2b
2)h+ b

√
hξ + 1

2b
2hξ2 and taking expectation lead to

E[ϕ̃(1 + x)]

= ϕ̃(1) + ϕ̃
′
(1)((a− 1

2b
2)h+ 1

2b
2h) + ϕ̃

′′
(1)
2 (b2h+ o(h)) + 1

6E(ϕ̃
′′′
(η)x3).

Here the fact has been used that Eξ = 0, E|ξ| = 2/
√
2π, E|ξ|2 = 1. Noticing

that ϕ̃ ∈ C3(R) and |ϕ̃′′′
(x)| ≤ H for all x ∈ R, we have

|1
6
E(ϕ̃

′′′
(η)x3)| ≤ H

6
E|x3| = o(h),

which implies

E[ϕ̃(1 + x)] = ϕ̃(1) + ϕ̃
′
(1)((a− 1

2b
2)h+ 1

2b
2h) + ϕ̃

′′
(1)
2 b2h+ o(h).

This proves formula (8) for ϕ̃(1 + (a− 1
2b

2)h+ b
√
hξ + 1

2b
2hξ2).

Part 2: Letting u1 = 1
2 +(a− 1

2b
2)h, u2 = b

√
h and, now we estimate the error

term e = E[ϕ(u1 +
1
2 (u2ξ + 1)2)− ϕ̃(u1 +

1
2 (u2ξ + 1)2)] as following

|e| = | ∫ +∞
−∞ [ϕ(u1 +

1
2 (u2z + 1)2)− ϕ̃(u1 +

1
2 (u2z + 1)2)]p(z)dz|,

where p(z) is the density of ξ.
In the following, we give the two cases to discuss:
Case 1: u2z + 1 6= 0. In this case, we suppose σ ∈ (0, 1/2). We set v =
u1 +

1
2 (u2z + 1)2, since u2z + 1 6= 0, which means v− u1 6= 0. Here without loss

of generality, we can assume b 6= 0 which implies u2 = b
√
h 6= 0. Noting that A
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is the integration range on which ϕ(v)− ϕ̃(v) = 0, we compute

|e| ≤ ∫
R\A |ϕ(v)− ϕ̃(v)|p(−1+

√
2(v−u1)

u2
) dv√

2(v−u1)|u2|

+
∫
R\A |ϕ(v)− ϕ̃(v)|p(−1−

√
2(v−u1)

u2
) dv√

2(v−u1)|u2|

≤ supv/∈A{p(−1+
√

2(v−u1)

u2
) 1√

2(v−u1)|u2|
} ∫R |ϕ(v)− ϕ̃(v)|dv

+supv/∈A{p(−1−
√

2(v−u1)

u2
) 1√

2(v−u1)|u2|
} ∫R |ϕ(v)− ϕ̃(v)|dv

≤ K|u2|2 supv/∈A{p(−1+
√

2(v−u1)

u2
) 1√

2(v−u1)|u2|3
}

+K|u2|2 supv/∈A{p(−1−
√

2(v−u1)

u2
) 1√

2(v−u1)|u2|3
}

= Kb2h supv/∈A{p(y1)|y1|3 1

|−1+
√

2(v−u1)|3
· 1√

2(v−u1)
}

+Kb2h supv/∈A{p(y2)|y2|3 1

|−1−
√

2(v−u1)|3
· 1√

2(v−u1)
},

(9)

where y1 =
−1+

√
2(v−u1)

u2
, y2 =

−1−
√

2(v−u1)

u2
.

Noticing that when v /∈ A, that is to say, v > 1 + σ, we have

−1 +
√
2(v − u1)

= −1 +
√
2(v − 1

2 − (a− 1
2b

2)h)

> −1 +
√
1 + 2σ = 2σ

1+
√
1+2σ

, h → 0,

(10)

or v < 1− σ, thus

−1 +
√
2(v − u1) < −1 +

√
1− 2σ = − 2σ

1+
√
1−2σ

, h → 0. (11)

Noting that y1 =
−1+

√
2(v− 1

2−(a− 1
2 b

2)h)

b
√
h

, thus using (10) and (11) gives y1 → ∞
uniformly on v /∈ A, as h → 0. By (10) and (11), we find that

(−1 +
√
2(v − 1

2 ))
3 ·

√
2(v − u1) → (−1 +

√
2(v − 1

2 ))
3 ·

√
2(v − 1

2 )

> 8σ3

(1+
√
1+2σ)3

√
1 + 2σ, h → 0,

or

(−1 +
√
2(v − 1

2 ))
3 ·

√
2(v − u1) <

−8σ3

(1+
√
1−2σ)3

√
1− 2σ, h → 0,

which implies | − 1+
√
2(v − 1

2 )|3 ·
√
2(v − 1

2 ) is bounded away from zero. With

the properties of p(z), we can prove p(y1)|y1|3 → 0, as y1 → ∞, thus

supv/∈A{p(y1)|y1|3 1

|−1+
√

2(v−u1)|3
· 1√

2(v−u1)
} = o(1), h → 0. (12)

Similarly

supv/∈A{p(y2)|y2|3 1

|−1−
√

2(v−u1)|3
· 1√

2(v−u1)
} = o(1), h → 0. (13)
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Inserting (12) and (13) into (9) yields

|e| = o(h).

Case 2: u2z + 1 = 0. In this case, we suppose σ ∈ (1/2, 1). Noticing that
u1 = 1

2 + (a− 1
2b

2)h ∈ A, when h → 0, we have

|e| = | ∫ +∞
−∞ [ϕ(u1 +

1
2 (u2z + 1)2)− ϕ̃(u1 +

1
2 (u2z + 1)2)]p(z)dz|

= | ∫ +∞
−∞ [ϕ(u1)− ϕ̃(u1)]p(z)dz| = 0.

Combining Part 1 and Part 2 leads the assertion (8). ¤

Based on Lemma 4.1, we can now begin to establish the main theorem in this
section.

Theorem 4.1. Given a, b, c, λ, the system (1) is asymptotically stable if and
only if there exists a h∗

1 > 0, the strong Milstein method (2) is asymptotically
stable for all 0 < h < h∗

1.

Proof. It follows from (2) that

Yn+1 = [1 + (a− 1
2b

2)h+ b
√
hξ + 1

2b
2hξ2 + 1

2 (2c− c2)∆Nn

+bc
√
hξ∆Nn + 1

2c
2(∆Nn)

2]Yn,
(14)

where ξ is standard Normal random variable. By the Lemma 5.1 of [5], we
deduce immediately that the asymptotic stability of the strong Milstein method
(14) is equivalent to

E[ln |1 + (a− 1
2b

2)h+ b
√
hξ + 1

2b
2hξ2 + 1

2 (2c− c2)∆Nn

+bc
√
hξ∆Nn + 1

2c
2(∆Nn)

2|] < 0.
(15)

Multiplying the expected value in (15) by eλh yields

eλhE[ln |1 + (a− 1
2b

2)h+ b
√
hξ + 1

2b
2hξ2 + 1

2 (2c− c2)∆Nn

+bc
√
hξ∆Nn + 1

2c
2(∆Nn)

2|]
= E[ln |1 + (a− 1

2b
2)h+ b

√
hξ + 1

2b
2hξ2|] + λhE[ln |1 + (a− 1

2b
2)h

+b
√
hξ + 1

2b
2hξ2 + 1

2 (2c− c2) + bc
√
hξ + 1

2c
2|]

+
∑∞

k=2
(λh)k

k! E[ln |1 + (a− 1
2b

2)h+ b
√
hξ + 1

2b
2hξ2 + 1

2 (2c− c2)k

+bc
√
hξk + 1

2c
2k2|].

(16)

Using Lemma 4.2 with ϕ = ln | · | yields
E[ln |1 + (a− 1

2b
2)h+ b

√
hξ + 1

2b
2hξ2|]

= (a− 1
2b

2)h+ 1
2b

2h− 1
2b

2h+ o(h) = (a− 1
2b

2)h+ o(h).
(17)

To discuss the second term at the right side of (16), we consider the following
two different cases:
Case 1: c 6= −1 then

λhE[ln |1 + (a− 1
2b

2)h+ b
√
hξ + 1

2b
2hξ2 + 1

2 (2c− c2) + bc
√
hξ + 1

2c
2|]

= λh(ln |1 + c|+ E[ln |1 + a− 1
2 b

2

1+c h+ b
√
hξ + b2hξ2

2(1+c) |]).
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Recalling the fundamental inequality

ln |u| ≤ |u− 1|, u ≥ 1. (18)

Thus

|E[ln |1 + a− 1
2 b

2

1+c h+ b
√
hξ + b2hξ2

2(1+c) |]|
≤ E[ln(1 + |a− 1

2 b
2

1+c h+ b
√
hξ + b2hξ2

2(1+c) |)]
≤ |a− 1

2 b
2

1+c |h+ |b|
√
hE|ξ|+ b2h

2|1+c|Eξ
2 = O(

√
h),

which implies

λhE[ln |1 + (a− 1
2b

2)h+ b
√
hξ + 1

2b
2hξ2

+ 1
2 (2c− c2) + bc

√
hξ + 1

2c
2|]

= λh ln |1 + c|+ o(h).

(19)

Without loss of generality, we suppose 0 < h ≤ h1 < 1. By using the inequality
(18), the third term in the expansion of (16) becomes

|∑∞
k=2

(λh)k

k! E[ln |1 + (a− 1
2b

2)h+ b
√
hξ + 1

2b
2hξ2 + 1

2 (2c− c2)k

+bc
√
hξk + 1

2c
2k2|]|

< (λh)2[(|a− 1
2b

2|h+ 2|b|√
2π

√
h+ 1

2b
2h)

∑∞
k=2

λk−2

k!

+(12 |2c− c2|+ 2√
2π

|bc|
√
h)

∑∞
k=2

λk−2

(k−1)! +
1
2c

2
∑∞

k=2
λk−2k
(k−1)! ]

< (λh)2[(|a− 1
2b

2|h+ 2|b|√
2π

√
h+ 1

2b
2h)M1 + ( 12 |2c− c2|

+ 2√
2π

|bc|
√
h)M2 +

1
2c

2M3] = o(h).

(20)

where
∑∞

k=2
λk−2

k! ≤ M1,
∑∞

k=2
λk−2

(k−1)! ≤ M2,
∑∞

k=2
λk−2k
(k−1)! ≤ M3. Here the fact

has been used that E|ξ| = 2/
√
2π, E|ξ|2 = 1. Combining (17), (19), (20) and

(16) yields

eλhE[ln |1 + (a− 1
2b

2)h+ b
√
hξ + 1

2b
2hξ2 + 1

2 (2c− c2)∆Nn

+bc
√
hξ∆Nn + 1

2c
2(∆Nn)

2|]
= (a− 1

2b
2 + λ ln |1 + c|)h+ o(h).

(21)

From (21), the sign of E[ln |1 + (a− 1
2b

2)h+ b
√
hξ + 1

2b
2hξ2 + 1

2 (2c− c2)∆Nn +

bc
√
hξ∆Nn + 1

2c
2(∆Nn)

2|] is same to the sign of a− 1
2b

2 + λ ln |1+ c| when h is
sufficiently small, and hence the assertion follows.
Case 2: c = −1. In this case, we will show that the Milstein method (2) is also
asymptotically stable with sufficiently small stepsize h for all values of a, b and
λ > 0. It follows from (16) that

eλhE[ln |1 + (a− 1
2b

2)h+ b
√
hξ + 1

2b
2hξ2 + 1

2 (2c− c2)∆Nn

+bc
√
hξ∆Nn + 1

2c
2(∆Nn)

2|]
= E[ln |1 + (a− 1

2b
2)h+ b

√
hξ + 1

2b
2hξ2|] + λhE[ln |(a− 1

2b
2)h

+ 1
2b

2hξ2|] +∑∞
k=2

(λh)k

k! E[ln |1 + (a− 1
2b

2)h+ b
√
hξ + 1

2b
2hξ2

− 3k
2 − b

√
hξk + 1

2k
2|].

(22)
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By (18)
λhE[ln |(a− 1

2b
2)h+ 1

2b
2hξ2|]

= λhE[lnh+ ln |(a− 1
2b

2) + 1
2b

2ξ2|]
≤ λh[lnh+ E(|a− 1

2b
2|+ 1

2b
2ξ2)]

= λh[lnh+ |a− 1
2b

2|+ 1
2b

2].

(23)

In a similar way as in deriving (20), we have

|∑∞
k=2

(λh)k

k! E[ln |1 + (a− 1
2b

2)h+ b
√
hξ + 1

2b
2hξ2

− 3k
2 − b

√
hξk + 1

2k
2|]| = o(h).

(24)

Combining (17), (23), (24) with (22) gives

E[ln |1 + (a− 1
2b

2)h+ b
√
hξ + 1

2b
2hξ2 + 1

2 (2c− c2)∆Nn

+bc
√
hξ∆Nn + 1

2c
2(∆Nn)

2|]
≤ e−λhE[ln |1 + (a− 1

2b
2)h+ b

√
hξ + 1

2b
2hξ2|] + λh(lnh+ |a− 1

2b
2|+ 1

2b
2)

+
∑∞

k=2
(λh)k

k! E[ln |1 + (a− 1
2b

2)h+ b
√
hξ + 1

2b
2hξ2 − 3k

2 − b
√
hξk + 1

2k
2|]

= e−λh[(a− 1
2b

2)h+ λh(lnh+ |a− 1
2b

2|+ 1
2b

2) + o(h)].

For all sufficiently small h, we immediately obtain

E[ln |1 + (a− 1
2b

2)h+ b
√
hξ + 1

2b
2hξ2 + 1

2 (2c− c2)∆Nn

+bc
√
hξ∆Nn + 1

2c
2(∆Nn)

2|] < 0.

Combining these different cases together leads the desired results. The proof is
completed. ¤

5. Asymptotical stability of the weak Milstein method

In section 3, we have discussed the mean square stability of the weak Mil-
stein method (4). In this section, we will investigate whether the weak Milstein
method (4) can share the asymptotical stability of the system (1).

Theorem 5.1. Given a, b, c, λ, the system (1) is asymptotically stable if and

only if there exists a ĥ∗
1 > 0, the weak Milstein method (4) is asymptotically

stable for all 0 < h < ĥ∗
1.

Proof. In view of Lemma 5.1 of [5], the weak Milstein method (4) is asymptot-
ically stable if and only if

E[ln |1 + (a− 1
2b

2)h+ b
√
hξ̂ + 1

2b
2hξ̂2 + 1

2 (2c− c2)∆̂Nn

+bc
√
hξ̂∆̂Nn + 1

2c
2(∆̂Nn)

2|] < 0,
(25)

where P(ξ̂ = −1) = P(ξ̂ = 1) = 1/2. Noticing ∆̂Nn comes from a two point

distribution:P(∆̂Nn = 0) = 1− λh, P(∆̂Nn = 1) = λh, we have

E[ln |1 + (a− 1
2b

2)h+ b
√
hξ̂ + 1

2b
2hξ̂2 + 1

2 (2c− c2)∆̂Nn

+bc
√
hξ̂∆̂Nn + 1

2c
2(∆̂Nn)

2|]
= (1− λh)E[ln |1 + (a− 1

2b
2)h+ b

√
hξ̂ + 1

2b
2hξ̂2|] + (λh)E[ln |1+

(a− 1
2b

2)h+ b
√
hξ̂ + 1

2b
2hξ̂2 + 1

2 (2c− c2) + bc
√
hξ̂ + 1

2c
2|]

(26)
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Note that for any h ∈ (0, ĥ1) with ĥ1 = min{1/(|a− 1
2b

2|+ |b|+ 1
2b

2)2, 1},

|(a− 1

2
b2)h+ b

√
hξ̂ +

1

2
b2hξ̂2| < (|a− 1

2
b2|+ |b|+ 1

2
b2)

√
h < 1.

Here the fact has been used that Eξ̂ = 0, E|ξ̂| = 1, E|ξ̂|2 = 1. Thus using Taylor
expansion gives

E[ln |1 + (a− 1
2b

2)h+ b
√
hξ̂ + 1

2b
2hξ̂2|]

= E((a− 1
2b

2)h+ b
√
hξ̂ + 1

2b
2hξ̂2)− 1

2E((a− 1
2b

2)h

+b
√
hξ̂ + 1

2b
2hξ̂2)2 + 1

3E[((a− 1
2b

2)h+ b
√
hξ̂ + 1

2b
2hξ̂2)ς]3

= (a− 1
2b

2)h+ o(h),

(27)

where 0 < ς < 1.
To discuss the second term in the expansion of (26), let us discuss the following
two possible cases:
Case 1: c 6= −1. In this case, similarly to (19), we have

(λh)E[ln |1 + (a− 1
2b

2)h+ b
√
hξ̂ + 1

2b
2hξ̂2 + 1

2 (2c− c2)

+bc
√
hξ̂ + 1

2c
2|]

= λh ln |1 + c|+ λhE[ln |1 + (a− 1
2 b

2)h

1+c + b
√
hξ̂ + b2hξ̂2

2(1+c) |]
= λh ln |1 + c|+ o(h).

(28)

Combing (27), (28) and (26) yields

E[ln |1 + (a− 1
2b

2)h+ b
√
hξ̂ + 1

2b
2hξ̂2 + 1

2 (2c− c2)∆̂Nn

+bc
√
hξ̂∆̂Nn + 1

2c
2(∆̂Nn)

2|]
= [a− 1

2b
2 + λ ln |1 + c|]h+ o(h).

With sufficiently small stepsize h, we find that (25) holds if and only if

a− 1
2b

2 + λ ln |1 + c| < 0.

Case 2: c= -1. In this case, in a similar way as in deriving (23), we have

λhE[ln |1 + (a− 1
2b

2)h+ b
√
hξ̂ + 1

2b
2hξ̂2 + 1

2 (2c− c2)

+bc
√
hξ̂ + 1

2c
2|] ≤ λh[lnh+ |a− 1

2b
2|+ 1

2b
2].

(29)

Substituting (27), (29) into (26), for sufficiently small stepsize h, we have

E[ln |1 + (a− 1
2b

2)h+ b
√
hξ̂ + 1

2b
2hξ̂2 + 1

2 (2c− c2)∆̂Nn

+bc
√
hξ̂∆̂Nn + 1

2c
2(∆̂Nn)

2|]
≤ (1− λh)E[ln |1 + (a− 1

2b
2)h+ b

√
hξ̂ + 1

2b
2hξ̂2|]

+λh[lnh+ |a− 1
2b

2|+ 1
2b

2]
= (a− 1

2b
2)h+ λh[lnh+ |a− 1

2b
2|+ 1

2b
2] + o(h) < 0.

Thus, combining these two different cases completes the proof. ¤

Theorem 4.1 and Theorem 5.1 show that the strong Milstein method (2) and
the weak Milstein method (4) can well reproduce the asymptotical stability of
the system (1).
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Figure 1. The mean square stability of the strong Milstein method.

6. Numerical experiments

Consider the linear equation with real and scalar coefficients

dx(t) = ax(t−)dt+ bx(t−)dW (t) + cx(t−)dN(t), t > 0 (30)

with x(0) = 1.
It is know that (30) has the solution[8]

x(t) = (1 + c)N(t) exp[(a− 1

2
b2)t+ bW (t)]. (31)

Now we test the mean square stability behavior of the Milstein method. In the
experiments examining the mean square stability, the expectations are estimated
by averaging 2000 different discretized Brownian paths. In the figures, the blue
broken lines represent the numerical solutions produced by the Milstein method
and we plot the graphs with the vertical axis scaled logarithmically.

In Figures 1, 2, we consider the equation (30) with the parameters a = −5, b =
1, c = −1.1, λ = 2 which satisfy the condition (3), hence the system is mean
square stable.

In Figure 1, we see that the strong Milstein method (2) is mean square stable
on h = 0.2, 0.25. With stepsize increasing to 0.3, the solution produced by
the strong Milstein method grows rapidly to the scale of 1012 and instability
is displayed without doubt. It is shown that the strong Milstein method (2) is
unstable if h is large enough and mean square stable if h ≤ 0.25.
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Figure 2. The mean square stability of the weak Milstein method.
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Figure 3. The asymptotical stabilities of the stable explicit so-
lution and the strong Milstein method. left: h = 0.01; middle :
h = 0.02; right: h = 0.2.

In Figure 2, we draw the numerical solutions produced by the weak Milstein

method (4). From Theorem 3.1, we compute ĥ0(a, b, c, λ) = 0.3195. Figure 2
shows that the weak Milstein method (4) is mean square stable on h = 0.2, 0.3 <
0.3195 and unstable on h = 0.4 > 0.3195. Hence we conclude that the weak
Milstein method (4) is mean square stable when h < 0.3195.

In order to show the asymptotical stability of the Milstein method, we plot
the numerical solutions and the explicit solution (31) by one sample trajectory
in all the figures. we use the red real lines and the blue broken lines to represent
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Figure 4. The asymptotical stabilities of the unstable ex-
plicit solution and the strong Milstein method. left: h = 0.01;
middle : h = 0.02; right: h = 0.2.
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Figure 5. The asymptotical stabilities of the stable explicit
solution and the weak Milstein method. left: h = 0.02; middle :
h = 0.04; right: h = 0.1.
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Figure 6. The asymptotical stabilities of the unstable explicit
solution and the weak Milstein method. left: h = 0.02; middle :
h = 0.04; right: h = 0.1.

the explicit solution and the numerical solutions respectively in all the pictures.
All the the graphs are drawn with the vertical axis scaled logarithmically.

To verify our result concerning asymptotical stability for the strong Milstein
method, we take the coefficients a = 0.5, b = 0.1, c = −0.2, λ = 4. Note that
these parameters satisfy the condition (7), thus the system is asymptotically
stable. In Figure 3, we plot the explicit solution (31) and the numerical solutions
produced by the strong Milstein method (2) with different stepsize h. We replace
the parameter c = −0.2 by c = −0.1, then the the coefficients a = 0.5, b =
0.1, c = −0.1, λ = 4 don’t satisfy the condition (7), so the system becomes
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unstable. In this case, we draw the explicit solution (31) and the numerical
solutions of the strong Milstein method (2) changing the stepsize h in Figure
4.. Figures 3 and 4 suggest that the two curves match well on h = 0.01, 0.02,
whereas, when for some large stepsize h = 0.2, the two curves can’t match well.
We conclude that the strong Milstein method (2) can well behave the same
stability of the explicit solution (31) with sufficiently small stepsize h ≤ 0.02.

To examine the asymptotical stability of the weak Milstein method (4), we
choose a = 1, b = 0.4, c = −0.8, λ = 4 which satisfy the condition (7), so the
system is asymptotically stable. We change the parameter a = 1 with a = 20
which leads to the unstability of the system. In Figure 6, we simulate the explicit
solution (31) and the numerical solutions of the weak Milstein method by the
different stepsize h. In Figures 5 and 6, we find that the two curves match
well on h = 0.02, 0.04, whereas, when for some large stepsize h = 0.1, the two
curves can’t match well. This implies that the weak Milstein method (4) can
well reproduce the same stability of the explicit solution (31) with sufficiently
small stepsize h ≤ 0.04.

7. Conclusion

In this paper, we have investigated the mean square stability and the asymp-
totical stability of the strong Milstein method and the weak Milstein method for
the stochastic differential equations with jumps. The forgoing stability results
show that both kinds of the Milstein methods can reproduce the mean square
stability. Moreover, it is shown that the asymptotical stability for stochastic
jump-diffusion differential equations is inherited by the two kinds of Milstein
methods with sufficiently small stepsizes h.
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