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STABILITY OF IMPULSIVE CELLULAR NEURAL

NETWORKS WITH TIME-VARYING DELAYS†

LIJUAN ZHANG∗ AND LIXIN YU

Abstract. This paper demonstrates that there is a unique exponentially
stable equilibrium state of a class of impulsive cellular neural network with
delays. The analysis exploits M-matrix theory and generalized compari-
son principle to derive some easily verifiable sufficient conditions for the
global exponential stability of the equilibrium state. The results extend
and improve earlier publications. An example with its simulation is given
for illustration of theoretical results.
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1. Introduction

Cellular neural networks(CNNs) are widely used in signal and image process-
ing, associative memories, pattern classification, etc. In particular, delay effect
on the stability and other dynamical behaviors of CNNs has been extensively
studied in the literature, we refer to [1-6] and the references cited therein. How-
ever, besides delay effect, impulsive effect likewise exists in a wide variety of
evolutionary processes in which states are changed abruptly, involving such field
as medicine and biology, economics, mechanics, electronics and telecommunica-
tions, etc. Many interesting results on impulsive effect have gained, e.g., Refs.
[7-14]. Therefore, it is necessary to consider both impulsive effect and delay
effect on the stability of CNNs.

Received January 13, 2011. Revised April 11, 2011. Accepted April 13, 2011.
∗Corresponding author. †This work was supported by Shandong Provincial Natural Science Foun-

dation(ZR2010AM012) and the Fund for Doctor of Yantai University(SX11B05).
c© 2011 Korean SIGCAM and KSCAM.

1327



1328 L.J. Zhang and L.X. Yu

In this paper, we consider the following impulsive CNNs with time-varying
delays





x′
i(t) = −cixi(t) +

n∑
j=1

aijfj (xj(t)) +
n∑

j=1

bijgj(xj (t− τij(t))) + Ii, t ≥ t0, t 6= tk,

4xi(tk) = xi(tk)− xi(t
−
k ) = Ik(xi(t

−
k )), i = 1, · · · , n, k ∈ Z+,

(1)

where n corresponds to the number of neurons, C = diag (c1, · · · , cn) > 0, xi(t)

is the state of neuron, f(x) =
(
f1(x1), · · · , fn(xn)

)T
and g(x) =

(
g1(x1), · · · , gn(xn)

)T
are the activation functions of the neurons, A = (aij)n×n and B = (bij)n×n are
connection matrices, The time-varying delays τij(t)(i, j = 1, · · · , n) are bounded
functions, i.e. 0 ≤ τij(t) ≤ τ , I = (I1, · · · , In)T is the constant input vector,
xi(t

−
k ) and xi(t

+
k ) denote the left-hand and right-hand limit at tk, respectively.

4xi(tk) is the impulse at moments tk and t1 < t2 < · · · is a strictly increasing
sequences such that

lim
k→∞

tk = ∞, 4tk = tk − tk−1 ≥ θ

for k ∈ Z+, where the value θ > 0 denotes the minimum time of interval be-
tween successive impulses. That is of course consistent with the view that a
dynamical system tends to become unstable when subjected to sufficiently fre-
quent impulses[7, 8, 15], in this paper some easily verifiable sufficient conditions
on the neural parameters and the impulses is found to guarantee the exponen-
tial convergence of the neural states towards the unique equilibrium state. The
results obtained by applying M-matrix theory and generalized comparison prin-
ciple(Lemma 2) enhance the earlier work, both with and without impulses and
delays.

In system (1), Ik(·) shows impulsive perturbation of the ith neuron at time
tk. If Ik(x) ≡ 0 for all x ∈ Rn, i = 1, · · · , n, k ∈ Z+, then the model (1) becomes
the continuous non-impulsive DCNNs:

x′
i(t) = −cixi(t) +

n∑

j=1

aijfj (xj(t)) +

n∑

j=1

bijgj(xj (t− τij(t))) + Ii, t ≥ t0. (2)

2. Preliminaries

In this section, we shall introduce some basic definitions, assumptions and

lemmas. Let PC(I,Rn)
4
=

{
ψ : I → Rn

∣∣ψ(t+) = ψ(t) for t ∈ I, ψ(t−) exists for
t ∈ (t0,∞), ψ(t−) = ψ(t) for all but points tk ∈ (t0,∞)

}
, where I ⊂ R is an in-

terval. Especially, let PC = PC
(
[−τ, 0], Rn

)
. For x ∈ Rn, φ ∈ PC, ‖x‖ denote a

vector norm defined by ‖x‖ = max1≤i≤n{|xi|}, ‖φ‖ = max1≤i≤n sup−τ≤s≤0 |φi(s)|,
and write x(t) = supt−τ≤s≤t x(s). For matrix A = (aij)n×n, |A| denotes absolute
value matrix given by |A| = (|aij |)n×n(i, j = 1, · · · , n).
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Definition 2.1. For any given t0 ∈ R, φ ∈ PC, a function x(t) ∈ PC([t0 −
τ,+∞),Rn) is called a solution of (1) with the initial condition

x(t0 + s) = φ(s), s ∈ [−τ, 0],

if x(t) satisfies (1) for t ≥ t0. Especially, a point x∗ in Rn is called an equilibrium
point of (1), if x(t) = x∗ is a solution of (1).

Definition 2.2. The equilibrium point x∗ = (x∗
1, · · · , x∗

n)
T of (1) is said to be

globally exponentially stable, if there exist constants β ≥ 1 and λ > 0 such that

‖x(t)− x∗‖ ≤ β
∥∥φ− x∗‖e−λ(t−t0), t ≥ t0.

Throughout this paper, we consider the activation functions of the neurons
satisfying the following assumption:

(H1) fi(·) and gi(·) are Lipschitz continuous, i.e., there exist constants Mi >
0, Ni > 0 such that

|fi(x)− fi(y)| ≤ Mi|x− y|, |gi(x)− gi(y)| ≤ Ni|x− y|,

for any x, y ∈ R, i = 1, · · · , n. Let M = diag (M1, · · · ,Mn), N =
diag (N1, · · · , Nn).

Definition 2.3 ([16]). A real matrix D = (dij)n×n is said to be an M-matrix,
if dij ≤ 0(i 6= j), and all leading principal minors of D are positive.

Lemma 2.1 ([16, 17]). If dij ≤ 0(i 6= j), D is an M-matrix if and only if there
exists a positive vector ξ > 0 such that Aξ > 0 or AT ξ > 0.

Lemma 2.2 ([18]). Let xi, yi ∈ C
(
[t0 − τ,+∞),R

)
satisfy the following condi-

tions:
i) xi(t) < yi(t), i = 1, · · · , n, t ∈ [t0 − τ, t0].
ii) x′

i(t) ≤ fi(t;x1(t), · · · , xn(t);x1(t), · · · , xn(t)),
y′i(t) > fi(t; y1(t), · · · , yn(t); y1(t), · · · , yn(t)), t ≥ t0, i = 1, · · · , n.

iii) fi ∈ C
(
[t0,+∞)×Rn×n,R

)
is a quasi-monotonic nondecreasing function

with respect to xi, that is, when xi = yi, xj ≤ yj(j 6= i, j = 1, · · · , n), xi ≤ yi(i =
1, · · · , n), the following inequality:

fi(t;x1(t), · · · , xn(t);x1(t), · · · , xn(t)) ≤ fi(t; y1(t), · · · , yn(t); y1(t), · · · , yn(t))

hold for i = 1, · · · , n, then

xi(t) < yi(t), i = 1, · · · , n, t ≥ t0. (3)

Lemma 2.3 ([5]). Under assumption (H1), the system (2) has a unique equi-

librium point x∗, if D
4
= C − (|A|M + |B|N)

is an M-matrix.
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3. Main Results

Let x∗ be an equilibrium point of impulsive system (1) and x(t) be any solution
of (1). For analytical convergence, let

yi(t) = xi(t)− x∗
i , Jk(yi(t

−
k )) = yi(t

−
k ) + Ik(yi(t

−
k ) + x∗

i )),

Fj(yj(t)) = fj(yj(t)+x∗
j )−fj(x

∗
j ), Gj(yj(t−τij(t))) = gj(yj(t−τij(t))+x∗

j )−gj(x
∗
j )),

Then Eq. (1) can be reduced to the following system




y′i(t) = −ciyi(t) +
n∑

j=1

aijFj (yj(t)) +
n∑

j=1

bijGj(yj (t− τij(t))), t ≥ t0, t 6= tk,

yi(tk) = Jk(yi(t
−
k )), i = 1, · · · , n, k ∈ Z+.

(4)
where the functions Fj and Gj inherit the properties of fj and gj , namely

Fj(0) = Gj(0) = 0, |Fj(u)| ≤ Mj |u|, |Gj(u)| ≤ Nj |u|,
and the function Jk(·) are assumed to be continuous. Let us consider Jk(·) of
the form

yi(tk) = Jk(yi(t
−
k )) = dkyi(t

−
k ), k ∈ Z+, (5)

where dk 6= 0 for k ∈ Z+. It is clear that the stability of the zero solution of
system (4) is equivalent to the stability of the equilibrium point x∗ of system
(1). Therefore, we may mainly discuss the stability of the zero solution of sys-
tem (4). Other authors have considered impulses of the form (5) in stability
investigations of impulsive neural networks. One category [13,14,19-26] is re-
stricted to impulsive jumps with small magnitudes 0 < |dk| < 1 independent of
the inter-impulse intervals 4tk = tk − tk−1. Another category [11, 12, 27, 28]
includes some linkage between the magnitudes |dk| and intervals 4tk, and this
is the case here.

Theorem 3.1. Under the assumptions of Lemma 2.3, impulsive DCNNs (1) has
a unique equilibrium point, which is globally exponentially stable and exponential
convergence rate equals λ− η, if the magnitudes |dk| satisfying
(H2) 0 < |dk| ≤ eηθ, where the number θ > 0 defines 4tk ≥ θ, 0 < η < λ,

λ > 0 is the solution the following inequality:
(
(λE − C) + |A|M + |B|Neλτ

)
ξ < 0, ξ ∈ Rn is a positive constant vector. (6)

Proof. Under the assumptions of Lemma 2.3, the non-impulsive system (2) has
a unique equilibrium point x∗. In view of Jk(0) = 0(i = 1, · · · , n, k ∈ Z+), then
x∗ is the unique equilibrium point of the impulsive system (1). Due to D being
an M-matrix, using Lemma 2.1, there exist ξi > 0(i = 1, · · · , n), such that

−ciξi +

n∑

j=1

ξj (|aij |Mj + |bij |Nj) < 0, (i = 1, · · · , n).
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By using continuity, there exists a sufficiently small constant λ > 0, such that

(λ− ci)ξi +

n∑

j=1

ξj
(|aij |Mj + |bij |Nje

λτ
)
< 0, (i = 1, · · · , n). (7)

that is, the inequality (6) has at least one positive solution λ. In view of ξi >
0(i = 1, · · · , n), there exists a constant µ > 1 such that µξi > 1(i = 1, · · · , n).
For the initial conditions: y(t0 + s) = φ(s), s ∈ [−τ, 0], where φ ∈ PC and
t0 ∈ R, it is clear that

|yi(t)| < µξiφεe
−λ(t−t0), t ∈ [t0 − τ, t0], (8)

where φε = ‖φ‖+ ε.
First, we prove that

|yi(t)| < µξiφεe
−λ(t−t0), t ≥ t0, i = 1, · · · , n, t 6= tk. (9)

Let wi(t) = µξiφεe
−λ(t−t0). From (8), so |yi(t)| < wi(t) for all t ∈ [t0 − τ, t0],

and from (7), we can deduce that

w′
i(t) =− λµξiφεe

−λ(t−t0)

>


−ciξi +

n∑

j=1

ξj
(|aij |Mj + |bij |Nje

λτ
)

φεe

−λ(t−t0)

=− ciξiµφεe
−λ(t−t0) +

n∑

j=1

ξj |aij |Mjµφεe
−λ(t−t0)

+

n∑

j=1

ξj |bij |Njµφεe
−λ(t−τ−t0)

≥− ciwi(t) +

n∑

j=1

|aij |Mjwj(t) +

n∑

j=1

|bij |Njwj(t),

(10)

where t ≥ t0, i = 1, · · · , n, t 6= tk. On the other hand, calculating the upper
right derivative D+|yi(t)| along the solution of system (4), we have

D+|yi(t)| =sgn (yi(t))y
′
i(t)

=sgn (yi(t))


−ciyi(t) +

n∑

j=1

ξjaijFj(yj(t)) + +

n∑

j=1

bijG(yj(t− τij(t)))




≤− ci|yi(t)|+
n∑

j=1

|aij |Mj |yj(t)|+
n∑

j=1

|bij |Nj |yj(t)|,

(11)
hold for t ≥ t0, i = 1, · · · , n, t 6= tk. Obviously, the right function of Eq. (11)
is quasi-monotonic nondecreasing with respect to |yi|. Therefore, from (10) and
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(11), by Lemma 2.2, Eq. (9) holds. Letting ε → 0, ξ̃ = µ(ξ1, · · · , ξn)T , then we
obtain

|y(t)| ≤ ξ̃‖φ‖e−λ(t−t0), t ≥ t0, i = 1, · · · , n, t 6= tk. (12)

Without loss of generality, we assume that t0 ≤ t1. Obviously, |y(t)| ≤
η0ξ̃‖φ‖e−λ(t−t0) for all t ∈ [t0, t1), where η0 = 1. Next, we prove that under
assumption (H2) the following inequality

|y(t)| ≤ η0η1 · · · ηk−1ξ̃‖φ‖e−λ(t−t0) (13)

holds for all t ∈ [tk−1, tk), where ηk = eη(tk−tk−1), k ∈ Z+.
Suppose that for all m = 1, · · · , k, the inequalities

|y(t)| ≤ η0η1 · · · ηm−1ξ̃‖φ‖e−λ(t−t0), t ∈ [tm−1, tm). (14)

hold. Noticing that 0 < |dk| ≤ eηθ ≤ ηk, it follows from (5) and (14) that

|y(tk)| ≤ eηθ|yi(t−k )| ≤ η0η1 · · · ηk−1ηk ξ̃‖φ‖e−λ(tk−t0). (15)

This, together with (14), lead to

|y(t)| ≤ η0η1 · · · ηk−1ηk ξ̃‖φ‖e−λ(t−t0) < η0η1 · · · ηk−1ηk ξ̃φεe
−λ(t−t0), t ∈ [tk−τ, tk].

By using the same method with (9), and letting ε → 0, we have

|y(t)| ≤ η0η1 · · · ηk ξ̃‖φ‖e−λ(t−t0), t ∈ [tk, tk+1). (16)

In view of (14) and (16), by induction, the inequality (13) holds. Therefore, we
can use (13) to conclude that

|y(t)| ≤eη(t1−t0) · · · eη(tk−1−tk−2)ξ̃‖φ‖e−λ(t−t0)

≤eη(t−t0)ξ̃‖φ‖e−λ(t−t0)

=ξ̃‖φ‖e−(λ−η)(t−t0), t ∈ [tk−1, tk), k ∈ Z+.

So,

‖x(t)− x∗‖ ≤ ξ̃‖φ− x∗‖e−(λ−η)(t−t0), t ≥ t0.

The proof is complete. ¤

Remark 3.1. In the paper [12], Mohamad limited |dk| as 0 < |dk| < eηθ,
but he only considered the Hopfield-type neural networks with impulses without
delays. In this paper, we study the global exponential stability of the equilibrium
point on impulsive CNNs with time-varying delays under the assumption of
0 < |dk| < eηθ. Here, the constant θ > 0 determines the size of the impulse,
η > 0 defines how large the impulse magnitudes can be, and the number λ−η > 0
determines the convergence rate of the network. Furthermore, the methods we
use in this paper are quite different from other references. The following example
is given to illustrate the usefulness of the results in this paper.
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Fig.1. Exponential convergence of neural network (17). The impulsive jumps are

characterized by dk = 5.55 at times tk = 1, 2, · · · and 4tk = 1.

4. Illustrative Examples

Consider the impulsive DCNNs given by
{

y′
1(t) = −6y1(t) + 0.5y1(t)− 0.1y2(t) + 0.5|y1(t− τ11(t))|,

y′
2(t) = −5y2(t) + 0.2y1(t) + 0.4y2(t)− 0.4|y1(t− τ21(t))|+ 0.3|y1(t− τ22(t))|,

(17)
for t > 0, t 6= tk = 1, 2, · · · , where τij(t) = | sin((i+ j)t)| ≤ 1 = τ for i, j = 1, 2.
The impulsive jumps are characterized by yi(t

+
k ) = dkyi(t

−
k ) for t = tk = 1, 2, · · · .

The parameters of conditions are as follows

C =

(
6 0
0 5

)
, A =

(
0.5 −0.1
0.2 0.4

)
, B =

(
0.5 0
−0.4 0.3

)
, M = N =

(
1 0
0 1

)
,

D = C − |A|M − |B|N =

(
5 −0.1

−0.6 4.3

)
.

we easily observe D is an M-matrix. Let ξ = (1, 10)T and λ = 1.716 which
satisfies the inequality (λE − C + |A|M + |B|Neλτ )ξ < 0. Let us pick the
number η = 1.715 < λ in order to illustrate the usefulness of the condition (H2),
in which case 4tk = θ = 1. The magnitudes of the impulsive jumps then satisfy
|dk| ≤ eηθ ≤ 5.55. By Theorem 3.1, the equilibrium state y∗ = 0 of the network
(17) is unique and globally exponentially stable. The exponential convergence
dynamics of the network (17) with and without impulses are shown in Fig. 1.

Consider again the impulsive network (17) for t > 0, t 6= tk = 2, 4, · · · sub-
jected to impulsive jumps characterized by yi(t

+
k ) = dkyi(t

−
k ) for tk = 2, 4, · · · .

The inter-impulse intervals are 4tk = θ = 2. On choosing the same number
η = 1.2, the magnitudes of the impulsive jumps satisfy |dk| ≤ eηθ ≤ 30.93, and
as before the equilibrium state y∗ = 0 of the network (17) is unique and glob-
ally exponentially stable. The exponential convergence dynamics of the network
(17) with and without impulses are shown in Fig. 2. The severe restriction
0 < |dk| < 1 of the impulse magnitudes considered in [13, 14, 19-26] is merely a
special case of the criterion 0 < |dk| < eηθ obtained in this paper.
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Fig.2. Exponential convergence of neural network (17). The impulsive jumps are

characterized by dk = 30.93 at times tk = 2, 4, · · · and 4tk = 2.
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