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MODIFIED HALPERN ITERATIVE ALGORITHMS FOR

NONEXPANSIVE MAPPINGS

MENGISTU GOA SANGAGO

Abstract. Halpern iterative algorithm is one of the most cited in the liter-
ature of approximation of fixed points of nonexpansive mappings. Different
authors modified this iterative algorithm in Banach spaces to approximate
fixed points of nonexpansive mappings. One of which is Hu [8] and Yao et al
[21] modification of Halpern iterative algorithm for nonexpansive mappings
in Banach spaces. It is the purpose of this paper to thoroughly analyze
this modification and its convergence conditions. Unfortunately, Hu [8]
and Yao et al [21] control conditions imposed on the modified Halpern it-
erative algorithm to have strong convergence are found to be not sufficient.
In this paper, counterexamples are constructed to prove that the strong
convergence conditions of Hu [8] and Yao et al [21] are not sufficient. It
is also proved that with some additional conditions on the control param-
eters, strong convergence of the defined iterative algorithm is obtained in
different Banach space settings.

AMS Mathematics Subject Classification : 47H09, 47H10.
Key words and phrases: Halpern iterative algorithm, nonexpansive map-
ping

1. Halpern Iterative Algorithm in Hilbert Spaces

Let K be a nonempty closed convex subset of a real Hilbert space H with
inner product denoted by 〈 , 〉 and induced norm by ‖ . ‖. Recall that a mapping
T : K → K is said to be nonexpansive if and only if for each x, y ∈ K

‖Tx− Ty‖ ≤ ‖x− y‖ .
Let Fix(T ) denote the set of fixed points of T ; that is, Fix(T ) = {x ∈ K : Tx =
x}.

Assume that u ∈ K is a fixed anchor. Then for any initial point x0 ∈ K, the
explicit iterative algorithm {xn} defined by

xn+1 = αnu+ (1− αn)Txn, n ≥ 0, (1.1)
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where {αn} is a sequence in (0, 1), is referred as Halpern iterative algorithm (or
simply Halpern iteration). Convergence of the Halpern iteration to a fixed point
depends on the variety of Banach spaces and also on control conditions imposed
on the parameter. In 1967, Halpern [7] proved the following theorem.

Theorem 1.1 (Halpern [7]). Let K be a nonempty bounded closed convex subset
of a real Hilbert space H and suppose T : K → K is a nonexpansive mapping.
Let {αn} be a sequence in (0, 1) that satisfies the following control conditions:

(C1) lim
n→∞

αn = 0;

(C2)

∞∑
n=0

αn = +∞ or, equivalently,

∞∏
n=0

(1− αn) = 0.

Suppose that there is strictly increasing sequence of nonnegative integers {nj}
such that

(i) lim
j→∞

αj+nj

αj
= 1;

(ii) lim
j→∞

njαj = +∞.

Then the sequence {xn} defined in (1.1) converges strongly to a fixed point of T .

Halpern [7] also investigated that control conditions (C1) and (C2) are neces-
sary, in the sense that, if a sequence defined in iterative algorithm (1.1) converges
strongly for every nonexpansive mapping T : K → K such that Fix(T ) 6= ∅ then
(C1) and (C2) must be satisfied.

In 1977, Lions [9] improved the control conditions of Halpern, and proved the
following theorem.

Theorem 1.2 (Lions [9]). Let K be a nonempty bounded closed convex subset
of a real Hilbert space H and suppose T : K → K is a nonexpansive mapping.
Let {αn} be a sequence in (0, 1) satisfying the control conditions (C1), (C2) and

(C3) lim
n→∞

αn+1 − αn

α2
n+1

= 0.

Then the sequence {xn} defined in (1.1) converges strongly to a fixed point of T .

In 1992, Wittmann [17] further improved control conditions to obtain the
following result.

Theorem 1.3 (Wittmann [17]). Let K be a nonempty closed convex subset of
a real Hilbert space H and suppose T : K → K is a nonexpansive mapping with
nonempty fixed point set Fix(T ). Let {αn} be a sequence in (0, 1) satisfying the
control conditions (C1), (C2) and

(C4)

∞∑
n=0

|αn+1 − αn| < +∞.
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Then the iterative sequence {xn} defined in (1.1) converges strongly to a fixed
point of T .

The following examples reveal that the control conditions (C3) and (C4) are
independent, in the sense that, one does not imply the other.

Example 1.1. The canonical choice

αn =
1

n+ 1
,

satisfies (C4) but fails (C3).

Example 1.2 (Bauschke [1]). If {αn} is given by

αn =

{
(k + 1)

−1
4 if n = 2k,

(k + 1)
−1
4 + 1

k+1 if n = 2k + 1

then it satifies (C3) but fails (C4) since
∞∑

k=1

|α2k+1 − α2k| = +∞.

In 2003, Xu [20] replaced conditions (C3) and (C4) by the following new
control condition:

(C5) lim
n→∞

αn+1 − αn

αn+1
= 0; or equivalently, lim

n→∞
αn

αn+1
= 1.

We observe that the canonical choice αn = 1
n+1 , n ≥ 1 satisfies (C5), and

since control condition (C5) removes the square in the denominator of condition
(C3), it is thus more general than (C3). However, the following examples reveal
that coupled with conditions (C1) and (C2), conditions (C4) and (C5) are not
comparable in general.

Example 1.3 (Xu [18]). If the sequence {αn} is given by

αn = e−n2

, n ≥ 1,

then {αn} satisfies (C1), (C2) and (C4) but fails to satisfy (C5).

Example 1.4 (Xu [18]). If the sequence {αn} is given by

αn =

{
1√
n
, if n is odd;

1√
n−1

, if n is even,

then {αn} satisfies (C1), (C2) and (C5) but fails to satisfy (C4).

Generalization of Halpern iterative algorithm to finite family of nonexpansive
mappings in Hilbert spaces was studied by Wittmann [17], Bauschke [1], and Xu
[20].

In the last half century, one of the key question regarding Halpern iterative
algorithm was the following:
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Are the conditions (C1) and (C2) sufficient for the strong con-
vergence of the sequence {xn} generated by (1.1) to a fixed point
of a nonexpansive mapping T : K → K?

However, in 2009, Suzuki [15] constructed the following counterexample which
shows that (C1) and (C2) are not sufficient for the strong convergence.

Example 1.5 (Suzuki [15]). Let X = < denote the set of reals, K = [−1, 1]
and u = 1. Define a nonexpansive mapping T : K → K by

Tx = −x, x ∈ K.

Then p = 0 is the unique fixed point of T in K. Now fix δ > 1 and define a
sequence {αn} in (0, 1) by

αn =

{
1
nδ , if n is odd,
1
n , if n is even.

Then it is obvious that the sequence {αn} satisfies the control conditions (C1)
and (C2).

Take the initial point x1 = δ−1
δ+1 . Then it is easily shown by induction that

x2n+1 =
δ − 1

δ + 1
for each n ≥ 1.

Thus, the sequence {xn} does not converge to 0 which is the only fixed point of
the mapping T .

Suzuki [15] also investigated some of strong necessary conditions for conver-
gence of Halpern iterative algorithm to fixed points of nonexpansive mappings.

Remark 1.1. The question “What are necessary and sufficient conditions to
have strong convergence of Halpern iterative algorithm?” is still open in general
Banach space setting.

2. Halpern Iterative Algorithm in Banach Spaces

The Banach space version of convergence of Halpern iterative algorithm was
first investigated by Reich [11] in 1980, who proved the following theorem.

Theorem 2.1 (Reich [11]). Let K be a nonempty closed convex subset of a
uniformly smooth Banach space X, and let T : K → K be a nonexpansive
mapping with a nonempty fixed point set Fix(T ). Let {αn} be a sequence in
(0, 1) defined by

αn = (n+ 2)−a,

where 0 < a < 1. Then for a fixed anchor u ∈ K and any initial point x0 ∈ K,
iterative sequence {xn} defined by (1.1) converges strongly to a fixed point of the
mapping T .

In 1983, Reich [12] posed the following question:
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Problem. Let X be a Banach space. Is there a sequence {αn}
such that whenever a weakly compact, convex subset K of X
possesses the fixed point property for nonexpansive mappings,
then the sequence {xn} defined by (1.1) converges to a fixed
point of T for all x ∈ K and all nonexpansive T : K → K?

Those theorems in Section 1 gave us partial answer on a Hilbert space setting.
Reich [13] also extended Wittmann’s [17] result to the class of uniformly

smooth Banach spaces having weakly sequentially continuous duality mapping
by further assuming that the control sequence {αn} satisfies (C1), (C2) and to
be decreasing (and hence (C4) is satisfied).

In 1997, Shioji and Takahashi [14] extended Wittmann’s [17] results to the
framework of a Banach space whose norm is uniformly Gâteaux differentiable.

In 2002, Xu [18] proved the following theorem in the framework of uniformly
smooth Banach spaces.

Theorem 2.2 (Xu [18])). Let K be a nonempty closed convex subset of a uni-
formly smooth Banach space X, and let T : K → K be a nonexpansive mapping
with a nonempty fixed point set. Let u, x0 ∈ K be given. Assume {αn} ⊆ (0, 1)
satisfies the control conditions (Cl), (C2) and (C5). Then the iteration process
{xn} defined by (1.1) converges strongly to a fixed point of T .

We now come up with more recent developments due to Hu [8] and Yao et al
[21].

Hu [8] and Yao et al [21] modified Halpern’s iterative algorithm to the follow-
ing general iterative algorithm defined explicitly as:{

x0 ∈ K

xn+1 = αnu+ βnxn + γnTxn, n ≥ 0
(2.1)

where u ∈ K is a fixed anchor and {αn}, {βn}, {γn} are sequences in (0, 1) such
that

αn + βn + γn = 1.

Their motivation behind modifying Halpern iteration was to obtain strong
convergence only by imposing control conditions (C1) and (C2) on a sequence
{αn}. The following theorems were stated and proved.

Theorem 2.3 (Hu [8]). Let K be a nonempty closed convex subset of a real
Banach space X whose norm is uniformly Gâteaux differentiable. Let T : K → K
be a nonexpansive mapping with nonempty fixed points set Fix(T ). Let {αn},
{βn} and {γn} be sequences in (0, 1) satisfying the following control conditions:

(i) αn + βn + γn = 1, for all n ≥ 0;

(ii) lim
n→∞

αn = 0, and
∞∑

n=0

αn = +∞;

(iii) lim
n→∞

γn = 0.
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Given a fixed anchor u ∈ K, assume that

lim
t→0

zt = p

for some p ∈ Fix(T ), where zt is the unique element of K which satisfies

zt = tu+ Tzt, t ∈ (0, 1).

Then for any initial point x0 ∈ K, the sequence {xn} defined in (2.1) converges
strongly to a fixed point of T .

Theorem 2.4 (Yao et al [21]). Let K be a nonempty closed convex subset of a
real uniformly smooth Banach space X and let T : K → K be a nonexpansive
mapping with a nonempty fixed points set Fix(T ). Let {αn}, {βn} and {γn} be
sequences in (0, 1) satisfying the control conditions:

(i) αn + βn + γn = 1, for all n ≥ 0;

(ii) lim
n→∞

αn = 0,

(iii)

∞∑
n=0

αn = +∞; and

(iv) lim
n→∞

γn = 0.

Then for a fixed anchor u ∈ K and for any initial point x0 ∈ K, {xn} defined
in (2.1) converges strongly to a fixed point of T .

Unfortunately, in Section 3, counterexamples are constructed to show that in
Theorem 2.3 and Theorem 2.4 the given assumptions of control conditions on
parameters are not sufficient to obtain strong convergence of the explicit iterative
sequence defined in (2.1).

3. Counterexamples

In this section, counterexamples are given to show that the assumed control
conditions on parameters of Theorem 2.3 and Theorem 2.4 are not sufficient
for the strong convergence of modified Halpern iterative algorithm. Throughout
this section < denotes the set of all real numbers.

Example 3.1. Put X = <, K = [−1, 1] and u=1.
Suppose T : [−1, 1] → [−1, 1] is defined by

Tx = −x, x ∈ K.

Then it is easily shown that T is a nonexpansive mapping with the only fixed
point 0. Let {αn} and {γn} be real sequences in the interval (0, 1

3 ) such that:

(1) αn = γn, ∀n ≥ 0;

(2) lim
n→∞

αn = 0, and

(3)

∞∑
n=0

αn = +∞.
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Let {βn} be a sequence in ( 23 , 1) such that

αn + βn + γn = 1,

for each n ≥ 0. Then {αn}, {βn} and {γn} satisfy the control conditions:

(i) αn + βn + γn = 1, for all n ≥ 0;

(ii) lim
n→∞

αn = 0,

(iii)

∞∑
n=0

αn = +∞; and

(iv) lim
n→∞

γn = 0.

Define a sequence {xn} in K by
{
x0 = 1

3

xn+1 = αnu+ βnxn + γnTxn, n ≥ 0.

Consider that

xn+1 = αnu+ βnxn + γnTxn = αn + βnxn − γnxn

= αn + (βn − γn)xn = αn + (1− αn − 2γn)xn

= αn + (1− 3αn)xn.

for each n ≥ 0. By induction, it is easily shown that

xn =
1

3
, ∀n ≥ 1.

Therefore, {xn} does not converge to 0.

Example 3.2. Let X, K, T and u be as in Example 3.1. Let {αn}, {βn} and
{γn} be sequences in (0, 1) such that

αn =
1

n+ 5
, βn = 1− 3

n+ 5
, and γn =

2

n+ 5
,

for each positive integer n. Then {αn}, {βn} and {γn} satisfy the control con-
ditions:

(i) αn + βn + γn = 1, for all n ≥ 0;

(ii) lim
n→∞

αn = 0, and

∞∑
n=0

αn = +∞;

(iii) lim
n→∞

γn = 0.

Define a sequence {xn} in K by
{
x0 = 1

5

xn+1 = αnu+ βnxn + γnTxn, n ≥ 0.
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Consider that

xn+1 = αnu+ βnxn + γnTxn = αn + βnxn − γnxn

= αn + (βn − γn)xn

=
1

n+ 5
+ (1− 5

n+ 5
)xn

for each n ≥ 0. By induction, it follows that

xn =
1

5
, ∀n ≥ 1.

Therefore, {xn} does not converge to 0 which is the only fixed point of the
mapping T .

Example 3.3 (Wang [16]). Let X be a real Banach space whose norm is uni-
formly Gâteaux differentiable. Let K be a nonempty closed and convex subset
of X defined by

K = {λy : λ ∈ [0, 3]},
where y 6= 0 with ‖y‖ = 1 is a fixed element of X. Let T : K → K be a mapping
defined by Tx = 0 for all x ∈ K. It is obvious that T is a nonexpansive mapping
and Fix(T ) = {0}. Take αn = 1

n+2 , βn = 1− 2
n+2 , and γn = 1

n+2 , for all n ≥ 0
and x0 = y, u = 3y. It is also shown easily that

lim
t→0

zt = lim
t→0

3ty = 0.

Observe that all conditions of Theorem 2.3 are satisfied. However, the iterative
sequence {xn} does not converge strongly to the fixed point z = 0 of the mapping
T .

The above examples reveal that additional control conditions on the param-
eters must be imposed for the validity of Theorem 2.3 and Theorem 2.4.

4. Convergence Theorems

Let K be a nonempty closed convex subset of a Banach space X and T :
K → K a nonexpansive mapping. Let Fix(T ) to denote the set of fixed points
of T ; that is,

Fix(T ) = {x ∈ K : T (x) = x}.
Given a point u ∈ K and t ∈ (0, 1), the mapping Tt : K → K defined by

Tt(x) = tu+ (1− t)Tx, x ∈ K,

is a contraction. By Banach contraction mapping principle Tt has a unique fixed
point, say yt ∈ K; that is,

yt = tu+ (1− t)Tyt.

Note that if Fix(T ) 6= ∅, then {yt : t ∈ (0, 1)} is bounded.
The study of convergence of {yt} as t → 0 plays a key role in the study of

convergence of iterative algorithms for nonexpansive mappings in Banach spaces.
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There is a vast literature on this subject and a complete summary of the topic
is not possible in this paper work only.

In the next paragraphs, we mention some of research results which are closely
linked to our main results of the paper.

Browder [2] and Halpern [7], simultaneously, studied the convergence of {yt}
as t → 0 in Hilbert space setting and proved the following result.

Theorem 4.1 (Browder [2], Halpern [7]). Let K be a nonempty closed convex
subset of a real Hilbert space H and let T : K → K be a nonexpansive mapping
with nonempty fixed points set Fix(T ). Then for some p ∈ Fix(T )

lim
t→0

yt = p

and satisfies the variational inequality

〈p− u, p− z〉 ≤ 0,

for each z ∈ Fix(T ).

The Banach space version of Theorem 4.1 was obtained by Reich [11] in which
he proved the following result.

Theorem 4.2 (Reich [11]). Let K be a nonempty closed convex subset of a real
uniformly smooth Banach space X and suppose T : K → K is a nonexpansive
mapping with a nonempty fixed points set Fix(T ). Then for some p ∈ Fix(T )

lim
t→0

yt = p,

and satisfies the variational inequality

〈p− u, J(p− z)〉 ≤ 0, z ∈ Fix(T ),

where J is the normalized duality mapping of X.

We recall that the normalized duality mapping J : X → 2X
∗
is given by

J(x) = {f ∈ X∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2}.
One of the important properties of normalized duality mapping is stated in

the following lemma.

Lemma 4.3 (Chang [5]). Let X be a real Banach space with the normalized
duality mapping J. Then, for each pair x, y ∈ X and for each j(x+y) ∈ J(x+y),
the following inequality holds:

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉.
The proof of the following technical lemma can be found in Xu ([18], [19],

[20]).

Lemma 4.4. Assume {λn} is a sequence of nonnegative real numbers such that

λn+1 ≤ (1− αn)λn + βn, n ≥ 0,
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where {αn} is a sequence in (0, 1) and {βn} is a sequence of real numbers such
that

(i)

∞∑
n=1

αn = +∞;

(ii) lim sup
n→∞

βn

αn
≤ 0 or

∞∑
n=1

βn < +∞.

Then limn→∞ λn = 0.

Theorem 4.5. Let K be a nonempty closed convex subset of a real uniformly
smooth Banach space X, and suppose that T : K → K is a nonexpansive mapping
with nonempty fixed points set Fix(T ). Let {αn}, {βn} and {γn} be sequences
in (0, 1) which satisfy the following control conditions:

αn + βn + γn = 1, for all n ≥ 0; (4.1)

lim
n→∞

αn = 0, and

∞∑
n=0

αn = +∞; (4.2)

lim
n→∞

βn = 0; (4.3)

∞∑
n=0

|αn+1 − αn| < +∞; (4.4)

∞∑
n=0

|βn+1 − βn| < +∞. (4.5)

Then for any given point u ∈ K, the sequence {xn} defined in (2.1) converges
strongly to a fixed point of T .

Proof. First, we prove that {xn} is bounded. Let z ∈ Fix(T ) be given. Then
for each positive integer n, we get

‖xn+1 − z‖ = ‖αn(u− z) + βn(xn − z) + γn(Txn − z)‖
≤ αn ‖u− z‖+ βn ‖xn − z‖+ γn ‖Txn − z‖
≤ αn ‖u− z‖+ (βn + γn) ‖xn − z‖
= αn ‖u− z‖+ (1− αn) ‖xn − z‖
≤ max{‖u− z‖ , ‖xn − z‖}.

By induction we conclude that

‖xn − z‖ ≤ max{‖u− z‖ , ‖x0 − z‖},
for each nonnegative integer n.

Hence {xn} is bounded and thus {Txn} too. Now we claim that

lim
n→∞

‖xn − Txn‖ = 0. (4.6)
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Since {xn} and {Txn} are bounded, it follows from control conditions (4.1),
(4.2), and (4.3) that

lim
n→∞

‖xn+1 − Txn‖ = 0. (4.7)

Note that for each positive integer n, we have

|γn − γn−1| = |(1− αn − βn)− (1− αn−1 − βn−1)|
= |(αn−1 − αn) + (βn−1 − βn)|
≤ |αn − αn−1|+ |βn − βn−1|.

Therefore, for each positive integer n,

|αn − αn−1|+ |βn − βn−1|+ |γn − γn−1| ≤ 2[|αn − αn−1|+ |βn − βn−1|].
Noting the above fact, for each positive integer n we get

‖xn+1 − xn‖ ≤ |αn − αn−1| ‖u‖
+ ‖βnxn + γnTxn − βn−1xn−1 − γn−1Txn−1‖
≤ |αn − αn−1| ‖u‖+ |βn − βn−1| ‖xn−1‖
+ |γn − γn−1| ‖Txn−1‖+ βn ‖xn − xn−1‖
+ γn ‖Txn − Txn−1‖ .

Since {xn} and {Txn} are bounded, there is a nonnegative real number M such
that

M = max{‖u‖ , sup
n

‖xn‖ , sup
n

‖Txn‖}.
Therefore,

‖xn+1 − xn‖ ≤ (1− αn) ‖xn − xn−1‖
+M [|αn − αn−1|+ |βn − βn−1|+ |γn − γn−1|]
≤ (1− αn) ‖xn − xn−1‖
+ 2M [|αn − αn−1|+ |βn − βn−1|].

Therefore, by control conditions (4.2), (4.4), (4.5) and Lemma 4.4 we obtain

lim
n→∞

‖xn+1 − xn‖ = 0. (4.8)

Since ‖xn − Txn‖ ≤ ‖xn − xn+1‖+‖xn+1 − Txn‖ , n ≥ 0, (4.6) follows trivially
from (4.7) and (4.8).

For t ∈ (0, 1) there is a unique yt ∈ K such that

yt = tu+ (1− t)Tyt.

It follows form Theorem 4.2 that

lim
t→0

yt = p

for some p ∈ Fix(T ). Now we claim that

lim sup
n→∞

〈u− p, J(xn − p)〉 ≤ 0. (4.9)
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Using Lemma 4.3, for each n ≥ 1 and t ∈ (0, 1), we get

‖yt − xn‖2 = ‖t(u− xn) + (1− t)(Tyt − xn)‖2

≤ (1− t)2 ‖Tyt − xn‖2 + 2t〈u− xn, J(yt − xn)〉
≤ (1− t)2[‖Tyt − Txn‖+ ‖Txn − xn‖]2
+ 2t〈u− xn, J(yt − xn)〉
≤ (1− t)2 ‖yt − xn‖2
+ ‖Txn − xn‖ [2 ‖yt − xn‖+ ‖Txn − xn‖]
+ 2t[〈yt − xn, J(yt − xn)〉+ 〈u− yt, J(yt − xn)〉]
= (1− t)2 ‖yt − xn‖2
+ ‖Txn − xn‖ [2 ‖yt − xn‖+ ‖Txn − xn‖]
+ 2t[‖yt − xn‖2 + 〈u− yt, J(yt − xn)〉]
= (1 + t2) ‖yt − xn‖2 + 2t〈u− yt, J(yt − xn)〉
+ ‖Txn − xn‖ [2 ‖yt − xn‖+ ‖Txn − xn‖].

It follows that

〈yt − u, J(yt − xn)〉 ≤ t

2
‖yt − xn‖2 + 1

2t
‖Txn − xn‖An, (4.10)

where An = 2 ‖yt − xn‖+ ‖Txn − xn‖ .
Since {yt : t ∈ (0, 1)} and {xn} are bounded, there exists a positive real

number Γ such that

An ≤ Γ,

for each positive integer n.
Hence it follows from (4.10) that

〈yt − u, J(yt − xn)〉 ≤ t

2
Γ2 +

1

2t
‖Txn − xn‖Γ. (4.11)

For fixed t ∈ (0, 1), letting n → ∞ in (4.11) and noting that (4.6), we have

lim sup
n→∞

〈yt − u, J(yt − xn)〉 ≤ t

2
Γ2. (4.12)

Thus it follows from (4.12) that

lim sup
t→0

lim sup
n→∞

〈yt − u, J(yt − xn)〉 ≤ 0. (4.13)

Since the normalized duality mapping J is norm-to-norm uniformly continu-
ous on bounded subsets of a uniformly smooth Banach spaces, the two limits in
(4.13) can be interchanged and (4.9) follows as a result.

Finally we show that {xn} converges strongly to p. Applying Lemma 4.3 we
get

‖xn+1 − p‖2 ≤ (1− αn) ‖xn − p‖2 + 2αn〈u− p, J(xn+1 − p)〉. (4.14)
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Noting (4.2), (4.9) and applying Lemma 4.4 to (4.14), we obtain the required
conclusion

lim
n→∞

‖xn − p‖ = 0.

This completes the proof.
¤

By a gauge we mean a continuous strictly increasing function φ : [0,∞) →
[0,∞) such that φ(0) = 0 and limt→∞ φ(t) = +∞. Let X be a Banach space.
The duality mapping (generally multivalued) Jφ : X → X∗ associated with a
gauge φ is defined by

Jφ(x) = {u∗ ∈ X∗ : 〈x, u∗〉 = ‖x‖ ‖u∗‖ , ‖u∗‖ = φ(‖x‖)},
for each x ∈ X, where 〈 , 〉 denotes the generalized duality pairing. In the
particular case φ(t) = t, the duality mapping is called the normalized duality
mapping.

A Banach space X is said to have a weakly continuous duality mapping if and
only if there exists a gauge φ such that the duality mapping Jφ is single-valued
and (sequentially) continuous from X with the weak topology to X∗ with the
weak∗ topology.

Definition 4.6. Let K be a nonempty closed convex subset of a Banach space
X and Q : X → K a surjective mapping. Then Q is said to be sunny if and only
if

Q(Qx+ t(x−Qx)) = Qx for all x ∈ X, t ≥ 0.

A mapping Q : X → X is said to be a retraction if and only if Q2 = Q; that
is, Qz = z for every z ∈ R(Q), range of Q. A subset K of X is said to be a
sunny nonexpansive retract of X if and only if there exists a sunny nonexpansive
retraction of X onto K; and it is said to be a nonexpansive retract of X if and
only if there exists a nonexpansive retraction of X onto K.

Zegeye and Shahzad [22] proved the following theorem whose application is
our second main result of the paper.

Theorem 4.7 (Zegeye and Shahzad [22]). Let K be a nonempty closed con-
vex subset of a real reflexive Banach space X having weakly continuous duality
mapping Jφ for some gauge φ. Let T : K → K be a nonexpansive mapping and
f : K → K be a contraction with constant β. Then for each t ∈ (0, 1), there
exists yt ∈ K satisfying the following condition:

yt = tf(yt) + (1− t)Tyt.

Suppose further that {yt} is bounded (or Fix(T ) 6= ∅). Then limt→0 yt exists and
is a fixed point of T . Suppose πK denotes the set of all contraction self-mappings
of K. Hence if we define Q : πK → Fix(T ) by

Q(f) = lim
t→0

yt, f ∈ πK ,
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then Q(f) solves the variational inequality

〈(I − f)Q(f), Jφ(Q(f)− y)〉, y ∈ Fix(T ).

In particular, if f = u ∈ K is a constant, then Q : K → Fix(T ) is reduced to
the sunny nonexpansive retraction of K onto Fix(T ),

〈Q(u)− u, Jφ(Q(u)− y)〉, y ∈ Fix(T ).

In 1967, Opial [10] introduced the following concept by exploiting some geo-
metric properties of Hilbert spaces.

Definition 4.8. A Banach space X is said to satisfy Opial’s condition if for any
sequence {xn} in X, the condition that {xn} convreges weakly to x ∈ X implies
that

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖ , for all y ∈ X, y 6= x.

Opial [10] proved that sequential spaces `p, 1 < p < +∞, satisfy Opial’s
condition; however, the analogous functional spaces Lp[0, 2π], p 6= 2, do not
have the property.

In 1967, Browder [3] proved the following fact.

Lemma 4.9. A Banach space with a weakly continuous duality mapping satisfies
Opial’s condition.

Definition 4.10. LetK be a nonempty subset of a Banach spaceX. A mapping
T : K → X is said to be demiclosed (at y) if for any sequence {xn} in K, the
conditions xn → x weakly and Txn → y strongly imply x ∈ K and Tx = y.

One of the fundamental and celebrated results in the study of nonexpansive
mappings is Browder’s Demiclosedness principle which states that

Theorem 4.11 (Browder [4]). If K is a nonempty closed convex subset of a
uniformly convex Banach space X and if T : K → X is a nonexpansive mapping,
then I − T is demiclosed, where I is the identity operator of X.

Furthermore, the following theorem was proved in Goebel and Kirk [6].

Theorem 4.12 (Goebel and Kirk [6]). A Banach space X with Opial’s property
satisfies Browder’s Demiclosedness principle; that is, if K is a nonempty closed
convex subset of a Banach space X satsifying Opial’s condition and if T : K → X
is a nonexpansive mapping, then I − T is demiclosed.

As an application of Theorem 4.7, we prove the following convergence theorem
of modified Halpern iterative algorithm defined in equation (2.1).

Theorem 4.13. Let K be a nonempty closed convex subset of a real reflexive
Banach space X having weakly continuous normalized duality mapping J . Let
T : K → K be a nonexpansive mapping with Fix(T ) 6= ∅. Let {αn}, {βn} and
{γn} be sequences in (0, 1) satisfying the following control conditions:

αn + βn + γn = 1, for all n ≥ 0; (4.15)
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lim
n→∞

αn = 0,

∞∑
n=0

αn = +∞;

∞∑
n=0

|αn+1 − αn| < +∞; (4.16)

lim
n→∞

βn = 0

∞∑
n=0

|βn+1 − βn| < +∞. (4.17)

Then for any given point u ∈ K, the sequence {xn} defined in (2.1) converges
strongly to a fixed point of T .

Proof. It is already proved in Theorem 4.5 that the sequence {xn} is bounded
and

lim
n→∞

‖xn − Txn‖ = 0. (4.18)

By Theorem 4.7 there exists p ∈ Fix(T ) such that

lim
t→0

yt = p, (4.19)

where yt = tu + Tyt for each t ∈ (0, 1). Since {xn} is bounded, there exists a
subsequence {xnj} of {xn} such that

lim sup
n→∞

〈p− u, J(p− xn)〉 = lim
j→∞

〈p− u, J(p− xnj )〉. (4.20)

Since X is a reflexive Banach space, without loss of generality, we assume
that

w − lim
j→∞

xnj = z

for some z ∈ K. It follows from Theorem 4.12 and noting that (4.18), z = Tz.
Again using Theorem 4.7 and noting (4.19), we have

〈p− u, J(p− z)〉 ≤ 0. (4.21)

Since J is weakly continuous, we have

lim
j→∞

〈p− u, J(p− xnj )〉 = 〈p− u, J(p− z)〉. (4.22)

Combining (4.20), (4.21), and (4.22) yields

lim sup
n→∞

〈p− u, J(p− xn)〉 ≤ 0. (4.23)

Now we claim that {xn} converges strongly to p. Applying Lemma 4.3 we get

‖xn+1 − p‖2 ≤ (1− αn) ‖xn − p‖2 + 2αn〈u− p, J(xn+1 − p)〉. (4.24)

Noting that (4.15), (4.23) and applying Lemma 4.4 to (4.24), we obtain the
required conclusion

lim
n→∞

‖xn − p‖ = 0.

This completes the proof. ¤
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