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Abstract. In this paper, we consider two-species periodic Gilpin-Ayala
competition system with delay and impulsive effect. By using some analysis
methods, sufficient conditions for the permanence of the system are derived.
Further, we give the conditions of the existence and global asymptotic
stable of positive periodic solution.
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1. Introduction

Impulsive differential equations are suitable for the mathematical simulation
of evolutionary process whose states are to sudden change at certain moments.
Equations of this kind are found in almost every domain of applied sciences[1-
9]. Recently, theory and applications of impulsive delay differential equations
have developed[10-13]. Mathematical models of various biological process and
phenomena in the study of population dynamics, biology, ecology,etc. can be
expressed by impulsive delay differential equations.

In this paper, we consider the following two-species Gilpin-Ayala competition
system with delay and impulsive effects.





y′1(t) = y1(t)(b1(t)− b11(t)y
θ11
1 (t− τ11)− b12(t)y

θ12
2 (t− τ12))

y′2(t) = y2(t)(b2(t)− b21(t)y
θ21
1 (t− τ21)− b22(t)y

θ22
2 (t− τ22))

}
t 6= τk,

∆y1(τ
+
k ) = (1 + hk

1)y1(τk)

∆y2(τ
+
k ) = (1 + hk

2)y2(τk)
t = τk

(1.1)
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with

(y1(t), y2(t)) = (ϕ1(t), ϕ2(t)) = ϕ(t),−τ ≤ t ≤ 0, ϕ ∈ L([−τ, 0], [0,+∞)), ϕ(0) > 0 (1.2)

where L([−τ, 0], [0,+∞))denotes the set of Lebesgue measurable functions on
[−τ, 0], τ = max{τ11, τ12, τ21, τ22}. y1(t), y2(t) denotes the concentration of two
competition species at time t, bi(t)(i = 1, 2) is ith growth rate at this time,
bij(i, j = 1, 2) denotes the competitive coefficient between the ith species and
the jth species, k ∈ Z+ = {1, 2, · · · }.

If system (1.1) without impulsive effect, delays and θij = 1, i 6= j, then system
(1.1) becomes the following competition model:

{
y′1(t) = y1(t)(b1(t)− b11(t)y

θ11
1 (t)− b12(t)y2(t))

y′2(t) = y2(t)(b2(t)− b21(t)y1(t)− b22(t)y
θ22
2 (t))

(1.3)

If the coefficients of system (1.2) are positive constants, then system (1.2) was
proposed and studied by Gilpin and Ayala [14]. To consider the periodic en-
vironmental factors in real population, it is reasonable to study Gilpin-Ayala
competition system with periodic coefficients. Fan and Wang [15] have investi-
gated a generalized periodic n-species competition system with delays, they have
obtained the sufficient conditions for the existence of positive periodic solution.

As a mathematical model, system (1.1) is more general and includes many
ecology models as special. If θij = 1, i, j = 1, 2, the system (1.1) becomes the
following competition system:




y′
1(t) = y1(t)(b1(t)− b11(t)y1(t− τ11)− b12(t)y2(t− τ12))

y′
2(t) = y2(t)(b2(t)− b21(t)y1(t− τ21)− b22(t)y2(t− τ22))

}
t 6= τk,

∆y1(τ
+
k ) = (1 + hk

1)y1(τk)

∆y2(τ
+
k ) = (1 + hk

2)y2(τk)
t = τk

(1.4)

The organization of the paper is as follows. In Section 1, a two-species pe-
riodic Gilpin-Ayala competition system with delay and impulsive effect is pro-
posed. In Section 2, we will give some notations and lemmas. In Section 3,
we establish sufficient conditions for existence and global asympotic stability of
positive periodic solutions of system (1.1). Lastly, we give a brief discussion.

2. Preliminaries

In what follows, for a continuous ω− periodic function g(t), we shall introduce
the notations

g =
1

ω

∫ ω

0

g(t)dt, gl = min
t∈[0,ω]

g(t), gm = max
t∈[0,ω]

g(t).

We shall make following hypotheses:
(H1) 0 < τ1 < τ2 < · · · < τk < τk+1 < · · · and lim

k→+∞
τk = +∞.

(H2) {hk
i }is a real sequence and hk

i > −1, i = 1, 2, k = 1, 2, · · · .
(H3) The function bi(t), bij(t), ı, j = 1, 2 are positive continuous ω− periodic

functions. θij , i, j = 1, 2 are positive constants, time delays τij , i, j = 1, 2 are
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nonnegative constants.
Definition 2.1. Functions y1(t), y2(t) ∈ ([−τ, 0], [0,+∞)) are said to be solu-

tion of system (1.1) on [−τ,+∞) if:
(1) y1(t), y2(t) are absolutely continuous on each interval [0, τ1] and [τk, τk+1],

k = 1, 2, · · · .
(2) y1(τ

+
k ), y2(τ

+
k ) and y1(τ

−
k ), y2(τ

−
k ) exist and y1(τ

+
k ) = y1(τ

−
k ), y2(τ

+
k ) =

y2(τ
−
k ) for any τk, k = 1, 2, · · · .

(3) y1(t) and y2(t) satisfy system (1.1) for almost everywhere in [0,+∞) and
at impulsive points τk may have discontinuity of the first kind.
Lemma 2.1 ([17]). Consider a single-species periodic logistic system with im-
pulses {

x′(t) = x(t)(a(t)− b(t)xθ(t)), t 6= τk
x(τ+k ) = (1 + hk), t = τk, k ∈ N

(2.1)

where θ is a positive constant, a(t), b(t) are continuous ω-periodic functions with
b(t) > 0, ωa > 0 and if there exists a positive integer q such that tk+q = tk +
ω, hk + q = hk. Let x(t) be any solution of system (2.1) with the initial value
x(0+) > 0.

(1) If
q∑

k=1

ln(1 + hk) + ωa > 0, then system (2.1) has a unique ω-periodic

solution x∗(t), which is globally asymptotically stable in the sense that lim
t→+∞

|
x(t)− x∗(t) |= 0;

(2) If
q∑

k=1

ln(1 + hk) + ωa < 0, then lim
t→+∞

x(t) = 0.

Obviously, if there exist a positive integer q such that τk+q = τk + ω, hk+q
i =

hk
i , i = 1, 2. and

q∑

k=1

ln(1 + hk
i ) + ωbi > 0, i = 1, 2.

then it follows forms lemma 2.1 that
{

x′
1(t) = x1(t)(b1(t)− b11(t)x

θ11
1 (t)), t 6= τk

x1(τ
+
k ) = (1 + hk

1), t = τk, k ∈ N
(2.2)

and {
x′
2(t) = x2(t)(b2(t)− b22(t)x

θ22
2 (t)), t 6= τk

x2(τ
+
k ) = (1 + hk

2), t = τk, k ∈ N
(2.3)

have the unique positive globally asymptotically stable ω-periodic solutions x∗
1(t)

and x∗
2(t) respectively.

We will discuss the existence of positive solution of system (1.1). We give the
following assumption:

(H4)
∏

0<τk<t
(1 + hk

i ) is an ω-periodic function and there exist four positive

constants mi,Mi, i = 1, 2 such that m1 ≤ ∏
0<τk<t

(1 + hk
1) ≤ M1 and m2 ≤
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∏
0<τk<t

(1 + hk
2) ≤ M2 for t > 0.

Under the above assumptions (H1) − (H4),we consider non-impulsive differ-
ential equation:

{
x′
1(t) = x1(t)(b1(t)− b11(t)p11(t)x

θ11
1 (t− τ11))− b12(t)p12(t)x

θ12
2 (t− τ12)),

x′
2(t) = x2(t)(b2(t)− b21(t)p21(t)x

θ21
1 (t− τ21))− b22(t)p22(t)x

θ22
2 (t− τ22))

(2.4)

where
pij(t) =

∏
0<τk<t−τij

(1 + hk
j )

θij , i, j = 1, 2 (2.5)

with initial condition (x1(t), x2(t)) = (ϕ1(t), ϕ2(t)) for −τ ≤ t ≤ 0, ϕ1(0) >
0, ϕ2(0)) > 0, (ϕ1(t), ϕ2(t) ∈ L([−τ, 0], [0,+∞)).
By a solution (x1(t), x2(t)) of (2.2) and (2.4), we mean an absolutely continuous
functions x1(t), x2(t) defined on [−τ, 0] which satisfies (2.2) a.e. for t > 0 and
x1(t) = ϕ(t), x2(t) = ψ(t) on [−τ, 0].

The following lemma will be used in the proofs of our results.
Lemma 2.2. Assume that (H1)− (H4) hold. Then
(1) xi(t), (i = 1, 2) is a solution of system (2.2) on [−τ,+∞), then yi(t) =∏
0<τk<t

(1 + hk
i )xi(t), (i = 1, 2) is a solution of (1.1) on [−τ,+∞).

(2) yi(t), (i = 1, 2) is a solution of system (1.1) on [−τ,+∞), then xi(t) =∏
0<τk<t

(1 + hk
i )

−1yi(t), (i = 1, 2) is a solution of (2.2) on [−τ,+∞).

Proof. First, we prove (1). Let xi(t), i = 1, 2 be a solution of system (2.2). It is
easy to see yi(t) =

∏
0<τk<t

(1 + hk
i )xi(t), i = 1, 2 is absolutely continuous on the

interval (τk, τk+1] and for any t 6= τk, k = 1, 2, · · · ,
∏

0<τk<t

(1 + hk
1)x

′
1(t) =

∏
0<τk<t

(1 + hk
1)x1(t)(b1(t)− b11(t)p11(t)x

θ11
1 (t− τ11))

− b12(t)p12(t)x
θ12
2 (t− τ12)),∏

0<τk<t

(1 + hk
2)x

′
2(t) =

∏
0<τk<t

(1 + hk
2)x2(t)(b2(t)− b21(t)p21(t)x

θ21
1 (t− τ21))

− b22(t)p22(t)x
θ22
2 (t− τ22)),

that is

y′1(t) = y1(t)(b1(t)− b11(t)y
θ11
1 (t− τ11)− b12(t)y

θ12
2 (t− τ12)),

y′2(t) = y2(t)(b2(t)− b21(t)y
θ21
1 (t− τ21)− b22(t)y

θ22
2 (t− τ22)).

On the other hand, for every τk, k = 1, 2, · · · ,
y1(τ

+
k ) = lim

t→τ+
k

∏
0<τj<t

(1 + hj
1)x1(t) =

∏

0<τj≤τk

(1 + hk
1)x1(τk) = (1 + hk

1)
∏

0<τj<τk

x1(τk),

y2(τ
+
k ) = lim

t→τ+
k

∏
0<τj<t

(1 + hj
2)x2(t) =

∏

0<τj≤τk

(1 + hk
2)x2(τk) = (1 + hk

2)
∏

0<τj<τk

x2(τk),
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and

y1(τk) =
∏

0<τj<τk

(1 + hj
1)x1(τk), y2(τk) =

∏
0<τj<τk

(1 + hj
2)x2(τk).

Thus, for every k = 1, 2, · · · ,
y1(τ

+
k ) = (1 + hk

1)y1(τk), y2(τ
+
k ) = (1 + hk

2)y2(τk). (2.6)

Next, we prove (2). Since y1(t), y2(t) is absolutely continuous on (τk, τk+1]
and, in view of (2.6), it follows that for any k = 1, 2, · · · ,

x1(τ
+
k ) =

∏

τ∗≤τj≤τk

(1 + hj
1)

−1y1(τ
+
k ) =

∏

τ∗≤τj<τk

(1 + hj
1)

−1y1(τk),

x2(τ
+
k ) =

∏

τ∗≤τj≤τk

(1 + hj
2)

−1y2(τ
+
k ) =

∏

τ∗≤τj<τk

(1 + hj
2)

−1y2(τk),

and

x1(τ
−
k ) =

∏

τ∗≤τj≤τk−1

(1 + hj
1)

−1y1(τ
−
k ) =

∏

τ∗≤τj<τk

(1 + hj
1)

−1y1(τk) = x1(τk),

x2(τ
−
k ) =

∏

τ∗≤τj≤τk−1

(1 + hj
2)

−1y2(τ
−
k ) =

∏

τ∗≤τj<τk

(1 + hj
2)

−1y2(τk) = x2(τk),

where k = 1, 2, · · · . Which implies that x1(t), x2(t) is continuous on [τ,+∞). It
is easy to prove that x1(t), x2(t) is absolutely continuous on [τ,+∞). Now, one
can easily obtain x1(t) =

∏
0≤τk<t

(1 + hk
1)

−1y1(t),

x2(t) =
∏

0≤τk<t

(1+hk
2)

−1y2(t) is a solution of (2.2). This completes the proof. ¤

Let X,Z be normed vector space, be a linear mapping, and N : X → Z be a
continuous mapping. The mapping L will be called a Fredholm mapping of index
zero if dimKerL =codim ImL < +∞ and ImL is closed in Z. If L is a Fred-
holm mapping of index zero there exist continuous projectors P : X → X and
Q : Z → Z such that ImP = KerL,KerQ = ImL = Im(I −Q). It follows that
L|domL∩KerP : (I −P )X → ImL is invertible. We denote the inverse of that
map by Kp. If Ω is an open bounded subset of X, the mapping N will be called
L-compact on Ω̄ if QN(Ω̄) is bounded and Kp(I − Q)N : Ω̄ → X is compact.
Since ImQ is isomorphic to KerL, there exist isomorphisms J : ImQ → KerL.

In the proof of our existence theorem below, we will use the continuation
theorem of Gaines and mawhin [16].

Lemma 2.3. Let L be a Fredholm mapping of index zero and N be L-compact
on Ω̄. Suppose

(a) For each λ ∈ (0, 1), every solution x of Lx = λNx is such that x ∈ ∂Ω.
(b) QNx 6= 0 for each x ∈ ∂Ω ∩KerL and deg{JQN,Ω ∩KerL, 0} 6= 0,
Then the equation Lx = Nx has at least one solution lying in DomL ∩ Ω̄.



1386 Shuwen Zhang and Dejun Tan

3. Main results

In this section, we will prove the permanence of the system (1.1) and give the
conditions for the existence and global asymptotic stability of positive periodic
solution of system (1.1).
Theorem 3.1. Assume that (H1 −H3) and τii = 0, i = 1, 2, hold. If there exist

a positive integer q such that τk+q = τk + ω, hk+q
i = hk

i , i = 1, 2 and

q∑

k=1

ln(1 + hk
1) + ωb1 − b12x∗

2(t) > 0,

q∑

k=1

ln(1 + hk
2) + ωb2 − b21x∗

1(t) > 0.

Then system (1.1) is permanent. where x∗
i (t), i = 1, 2 are described above.

Theorem 3.2. Assume that (H1 − H3) and τii = 0, i = 1, 2, hold. If there

exist a positive integer q such that τk+q = τk + ω, hk+q
i = hk

i , i = 1, 2 and
q∑

k=1

ln(1 + hk
i ) + ωbi/ < 0. Then system (1.1) is extinct.

Theorem 3.3. For system (1.1), we assume that (H1) − (H4) hold and P1 >
0, Q1 > 0. If t is large enough, then K1 ≤ y1(t) ≤ K2, N1 ≤ y2(t) ≤ N2, Where

K1 = m1(
P1

bm11M
θ11
1

)
1

θ11 exp((P1 −K2)τ
∗),K2 = M1(

bm1
bl11m

θ11
1

)
1

θ11 exp(bm1 τ∗)

N1 = m2(
Q1

bm22M
θ22
2

)
1

θ22 exp((Q1 −N2)τ
∗), N2 = M2(

bm2
bl22m

θ22
2

)
1

θ22 exp(bm2 τ∗)

where

P1 = bl1 − bm12N
θ12
2 , Q1 = bl2 − bm21K

θ21
2

Proof. From system (2.2), we have

x′
1(t) ≤ x1(t)(b1(t)−b11(t)p11(t)x

θ11
1 (t−τ11)) ≤ x1(t)(b

m
1 −bl11m

θ11
1 xθ11

1 (t−τ11)) (3.1)

x′
2(t) ≤ x2(t)(b2(t)−b22(t)p22(t)x

θ22
2 (t−τ22)) ≤ x2(t)(b

m
2 −bl22m

θ22
2 xθ22

2 (t−τ22)) (3.2)

Take

K∗
2 = (

bm1
bl11m

θ11
1

)
1

θ11 , N∗
2 = (

bm2
bl22m

θ22
2

)
1

θ22

Firstly, we prove y1(t) ≤ K2, y2(t) ≤ N2.
Case 1. Suppose x1(t) is oscillatory K∗

2 . That is, there exist a time sequence
tk and τ∗ < t1 < t2 < · · · < tn < · · · such that lim

k→∞
tk = ∞ and x1(tk) = K∗

1 .

Let x1(ξk) be maximum of x1(t) on (tk, tk+1), k = 1, 2, · · · and x1(ξk) > K∗
1 . We

have

0 =
dx1(t)

dt
|t=ξk ≤ x1(ξk)b

l
11m

θ11
1 (k∗2 − xθ11

1 (ξk − τ∗)).

This lead to

x1(ξk − τ∗) ≤ K∗
2 .
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Since x1(ξk) ≥ K∗
2 and x1(ξk−τ∗) ≤ K∗

2 , then let η be the first zero of x1(t)−K∗
2

in [ξk − τ∗, ξk), that is, x1(η) = K∗
2 . By integrating (3.1) from η to ξk, we

obtain

ln
x1(ξk)

x1(η)
≤

∫ ξk

η

[bm1 − bl11m
θ11
1 x1(t− τ11)]dt ≤

∫ ξk

η

bm1 dt ≤ bm1 τ∗.

Therefore, we have
x1ξk) ≤ K∗

2 exp(b
m
1 τ∗).

so
x1(t) ≤ K∗

2 exp(b
m
1 τ∗), t > t1 + 2τ∗. (3.3)

By lemma 2.1 and (3.3), we have

y1(t) =
∏

0<τk<t

(1 + hk
1)x1(t) < M1k

∗
2 exp(b

m
1 τ∗) = K2, t > t1 + 2τ∗.

Case II. Suppose x1(t) is not oscillatory about k∗2 . Then for any ε > 0, there
exists a constant T1 > 0, such that

x1(t) < K∗
2 + ε, t > T1.

Therefore, there exist a constant T2 > 0 such that

x1(t) < k∗2 exp(b
m
1 τ∗), t > T2.

By lemma 2.1, we have

y1(t) ≤ M1k
∗
2 exp(b

m
1 τ∗) = K2.

Similarly, from (3.2) there exist a constant T3 > 0 such that

y2(t) ≤ M2N
∗
2 exp(bm2 τ∗) = N2.

Further, we prove y1(t) ≥ K1, y2(t) ≥ N1.
From system (2.2),we have

x′
1(t) ≥ x1(t)(P1 − bm11M

θ11
1 xθ11

1 (t− τ11))) (3.4)

x′
2(t) ≥ x2(t)(Q1 − bm22M

θ22
2 xθ22

2 (t− τ22)) (3.5)

Similarly, from (3.4) and (3.5) there exist a constant T4 > 0, T5 > 0 such that

x1(t) ≥ (
P1

bm11M
θ11
1

)
1

θ11 exp((P1 −K2)τ
∗), t > T4, (3.6)

x2(t) ≥ (
Q1

bm22M
θ22
2

)
1

θ22 exp((Q1 −N2)τ
∗), t > T5. (3.7)

Then by lemma 2.1 and (3.6) (3.7), we have

y1(t) ≥ m1(
P1

bm11M
θ11
1

)
1

θ11 exp((P1 −K2)τ
∗) = K1, t > T4,

y2(t) ≥ m2(
Q1

bm22M
θ22
2

)
1

θ22 exp((Q1 −N2)τ
∗) = N1, t > T5.
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The proof is completed. ¤
Theorem 3.4. If (H1) − (H4) hold and assume that the system of algebraic
equations

b11p11x
θ11
1 + b12p12x

θ12
2 = b1

b21p21x
θ21
1 + b22p22x

θ22
2 = b2

(∗)
has finite solution x∗ = (x∗

1, x
∗
2) with x∗

1 > 0, x∗
2 > 0 and

∑
x∗ signJ(x∗) 6= 0. In

addition bi − bijpij exp[
θij
θii

ln( bi
biipii

) + 2θijωbi] > 0, i 6= j, i = 1, 2, j = 1, 2.

Then system (1.1) exists at least a periodic solution.

Proof. We make the change of variables

x1(t) = exp(u1(t)), x2(t) = exp(u2(t)). (3.8)

Then system (2.2) can be rewritten as
{

u′
1(t) = b1(t)− b11(t)p11(t) exp(θ11u1(t− τ11))− b12(t)p12(t) exp(θ12u2(t− τ12)),

u′
2(t) = b2(t)− b21(t)p21(t) exp(θ21u1(t− τ21))− b22(t)p22(t) exp(θ22u2(t− τ22)).

(3.9)

Let
X = Z = {u(t) = (u1(t), u2(t)) ∈ C(R,R2), u(t+ ω) = u(t)}.

Then X and Z are both Banach spaces with the usual norm

‖u‖ = max
t∈[0,ω]

|u1(t)|+ max
t∈[0,ω]

|u2(t)|

for any u ∈ X (or Z).
Let

Nu(t) =

(
b1(t)− b11(t)p11(t) exp(θ11u1(t− τ11))− b12(t)p12(t) exp(θ12u2(t− τ12))
b2(t)− b21(t)p21(t) exp(θ21u1(t− τ21))− b22(t)p22(t) exp(θ22u2(t− τ22))

)
,

Lu = u′, Px =
1

ω

∫ ω

0

u(t)dt, u ∈ X,Qz =
1

ω

∫ ω

0

z(t)dt, z ∈ Z.

Obviously,

KerL = {u|u ∈ X,u = h, h ∈ R2}, ImL = {z|z ∈ Z,

∫ ω

0

z(t)dt = 0}

and dim kerL=codim ImL=2. Since ImL is closed in Z,L is a Fredholm mapping
of index zero. It is not difficult to see P andQ are continuous projectors such that
ImP = KerL,KerQ+ ImL = Im(I−Q). Moreover, the generalized inverse (to

L) Kp : ImL → KerP ∩DomL is given by Kp(z) =
∫ t

0
z(s)ds− 1

ω

∫ ∫ ω

0

∫ t

0
dsdt.

Thus,

QNu =
1

ω

∫ ω

0

Nu(t)dt,

Kp(I −Q)Nu(t) +

∫ t

0

Nu(s)ds− 1

ω

∫ ω

0

∫ t

0

Nu(s)dsdt− (
t

ω
− 1

2
)

∫ ω

0

Nu(s)ds.

It is obvious that QN and Kp(I − Q)N are continuous, and using the Arzela-

Ascoli, it is easy to show that Kp(I−Q)N(Ω) is compact for any open bounded
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set Ω ⊂ X. Furthermore, QN(Ω is bounded. Hence, N is L−compact on Ω for
any open bounded set Ω ⊂ X. Corresponding to the equation Lx = λNx, λ ∈
(0, 1), we have

u′
1(t) = λ(b1(t) − b11(t)p11(t) exp(θ11u1(t − τ11)) − b12(t)p12(t) exp(θ12u2(t − τ12))),

u′
2(t) = λ(b2(t) − b21(t)p21(t) exp(θ21u1(t − τ21)) − b22(t)p22(t) exp(θ22u2(t − τ22))).

(3.10)

Suppose that u(t) ∈ X is a solution of (3.10) for a certain λ ∈ (0, 1). Integrating
(3.10) from 0 to ω, we obtain
∫ ω

0

[b11(t)p11(t) exp(θ11u1(t− τ11)) + b12(t)p12(t) exp(θ12u2(t− τ12)]dt = ωb1

(3.11)
and∫ ω

0

[b21(t)p21(t) exp(θ21u1(t− τ21)) + b22(t)p22(t) exp(θ22u2(t− τ22)]dt = ωb2

(3.12)
From (3.10),(3.11) and (3.12), we have

∫ ω

0
|u′

1(t)|dt
≤ λ[

∫ ω

0
b1(t)dt+

∫ ω

0
[b11(t)p11(t) exp(θ11u1(t− τ11))

+b12(t)p12(t) exp(θ12u2(t− τ12)]dt] < 2ωb1

(3.13)

∫ ω

0
|u′

2(t)|dt
≤ λ[

∫ ω

0
b2(t)dt+

∫ ω

0
[b21(t)p21(t) exp(θ21u1(t− τ21))

+b22(t)p22(t) exp(θ22u2(t− τ22)]dt] < 2ωb2

(3.14)

Since u(t) ∈ X, there exist ξi, ζi ∈ [0, ω], i = 1, 2 such that

ui(ξi) = min
t∈[0,ω]

ui(t), ui(ζi) = max
t∈[0,ω]

ui(t).

From (3.11) and (3.12), we have

ωbi ≥
∫ ω

0
bii(t)pii(t) exp(θiiui(t− τii))dt =∫ ω−τii

−τii
bii(s+ τii)pii(s+ τii) exp(θiiui(s))ds ≥ ωbiipii exp(θiiui(ξi)), i = 1, 2.

Moreover

ui(ξi) ≤ 1

θii
ln[

bi

biipii
], i = 1, 2.

Then

ui(t) ≤ ui(ξi) +

∫ ω

0

|u′
i(t)|dt ≤

1

θii
ln[

bi

biipii
] + 2ωbi

.
= Ri, i = 1, 2. (3.15)

On the other hand, from (3.11) and (3.12), we obtain
∫ ω−τii
−τii

bii(s + τii)pii(s +

τii) exp(θiiui(s))ds = ωbi−
∫ ω−τij
−τij

bij(s+τij)pij(s+τij) exp(θijuj(s))ds i 6= j, i =

1, 2, j = 1, 2. Then we get

biipii exp(θiiui(ζi)) ≥ bi − bijpij exp(θijRj), i 6= j, i = 1, 2, j = 1, 2.
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which implies

ui(ζi) ≥ 1

θii
ln{ 1

biipii
(bi − bijpij exp[

θij
θii

ln(
bi

biipii
) + 2θijωbi])} .

= Si, (3.16)

where i 6= j, i = 1, 2, j = 1, 2. From (3.13),(3.14) and (3.16), we have

ui(t) ≥ ui(ζi)−
∫ ω

0

|u′
i(t)|dt > Si − 2ωbi, i = 1, 2. (3.17)

which,together with (3.15)implies

max
t∈[0,ω]

|ui(t)| < max{|Ri|, |Si − 2ωbi|} = Fi, i = 1, 2.

Clearly, Fi, i = 1, 2 are not dependent on the choice of λ. We can take sufficiently
large M such that M > F1 + F2 and the solution of equation (∗) satisfies M >
|x∗

1|+ |x∗
2|.

Set Ω
.
= {u = (u1, u2) ∈ X|‖u‖ < M}. It is clear that Ω satisfies the requirement

(a) in Lemma 2.2, When u ∈ ∂Ω ∩KerL = ∂Ω ∩ R2, u is a constant vector in
R2 with ‖u‖ = M. Then

QNu =

(
b1 − b11p11 exp(θ11u1)− b12p12 exp(θ12u2)

b2 − b21p21 exp(θ21u1)− b22p22 exp(θ22u2)

)
6= 0,

The requirement (b) in Lemma 2.2 is also satisfied. In view of the assumption
in Theorem 3.2, it is easy prove that

deg{JQNu,Ω ∩KerL, 0} 6= 0.

By now all the assumptions required in Lemma 2.2 hold. It follows by Lemma
2.2 that system (3.9) has a ω− periodic solution u∗(t) = (u∗

1(t), u
∗
2(t)) ∈ Ω. By

the change of x∗
i (t) = exp(u∗

i (t)), i = 1, 2, we obtain that x∗(t) = (x∗
1(t), x

∗
2(t))

is a positive ω− periodic solution of (2.2).
By Lemma 2.1 and y∗i (t) =

∏
0<τk<t

(1+hk
i )x

∗
i (t), i = 1, 2, then system (1.1) has an

ω− positive periodic solution y∗(t) = (y∗i (t), y
∗
i (t)). The proof is complete. ¤

Theorem 3.5. If the conditions of Theorem (3.2) are hold. Furthermore τ11 =
τ22 = 0, θ12 = θ22, θ11 = θ21 and(b11p11)

l−(p21b21)
m > 0, (b22p22)

l−(p12b12)
m >

0. Then system (1.1) has a unique ω−periodic solution (y∗1(t), y
∗
2(t)) which is

globally asymptotically stable.

Proof. Suppose x∗(t) = (x∗
1(t), x

∗
2(t)) is a positive ω−periodic solution of system

(2.2). We need to show that x∗(t) is globally asymptotically stable. Consider a
Lyapunov functional V (t) defined by

V (t) = | lnx1(t)− lnx∗
1(t)|+ | lnx2(t)− lnx∗

2(t)|+∫ t

t−τ12
b12(s+ τ12)p12(s+ τ12)|(x2(s))

θ22 − (x∗
2(s))

θ22 |ds+∫ t

t−τ21
b21(s+ τ21)p21(s+ τ21)|(x1(s))

θ11 − (x∗
1(s))

θ11 |ds, t ≥ 0.



The dynamic of two-species impulsive delay Gilpin-Ayala competition system 1391

By calculating and estimating the upper right derivative of V (t) along the solu-
tion of (2.2), we have

D+V (t) ≤ −(b11(t)p11(t)− p21(t+ τ21)b21(t+ τ21))|(x1(t))
θ11 − (x∗

1(t))
θ11 |

−(b22(t)p22(t)− p12(t+ τ12)b12(t+ τ12))|(x2(t))
θ22 − (x∗

2(t))
θ22 |

≤ −((b11p11)
l − (p21b21)

m)|(x1(t))
θ11 − (x∗

1(t))
θ11 |

−((b22p22)
l − (p12b12)

m)|(x2(t))
θ22 − (x∗

2(t))
θ22 |, t ≥ 0.

Then

D+V (t) ≤ −µ(|(x1(t))
θ11 − (x∗

1(t))
θ11 |+ |(x2(t))

θ22 − (x∗
2(t))

θ22 |) (3.18)

where
µ = min{(b11p11)l − (p21b21)

m, (b22p22)
l − (p12b12)

m}.

Integrating from 0 to t on both sides of (3.18) leads to:

V (t)+µ

∫ t

0
(|(x1(s))

θ11−(x∗
1(s))

θ11 |+|(x2(s))
θ22−(x∗

2(s))
θ22 |)ds ≤ V (0) < +∞, t ≥ 0, (3.19)

then∫ t

0

(|(x1(s))
θ11 − (x∗

1(s))
θ11 |+ |(x2(s))

θ22 − (x∗
2(s))

θ22 |)ds ≤ V (0)

µ
< +∞, t ≥ 0

and hence

|(x1(t))
θ11 − (x∗

1(t))
θ11 |+ |(x2(t))

θ22 − (x∗
2(t))

θ22 | ∈ L1[0,+∞).

In view of the definition of V (t) and (3.19), by Barbalat’s lemma [17], we have

lim
t→+∞

(|(x1(s))
θ11 − (x∗

1(s))
θ11 |+ |(x2(s))

θ22 − (x∗
2(s))

θ22 |) = 0.

Hence

lim
t→+∞

|(x1(s))
θ11 − (x∗

1(s))
θ11 | = 0, lim

t→+∞
|(x2(s))

θ22 − (x∗
2(s))

θ22 | = 0.

Further,
lim

t→+∞
|(x1(s)− x∗

1(s)| = 0, lim
t→+∞

|(x2(s)− x∗
2(s)| = 0. (3.20)

By Lemma 2.1, we know yi(t) =
∏

0<τk<t
(1+hk

i )xi(t), y
∗
i (t) =

∏
0<τk<t

(1+hk
i )x

∗
i (t), i =

1, 2 are solution of system (1.1).
By the hypotheses (H2) and (3.20),we obtain

lim
t→+∞

|(y1(s)− y∗1(s)| = 0, lim
t→+∞

|(y2(s)− y∗2(s)| = 0.

This completes the proof of Theorem 3.5. ¤

For system (1.3), we obtain the following results using the method of system
(1.1).
Theorem 3.6. For system (1.3), we assume that (H1) − (H3) hold and P1 >
0, Q1 > 0. If t is large enough, then K1 ≤ y1(t) ≤ K2, N1 ≤ y2(t) ≤ N2, Where

K1 = m1(
P1

bm11M1
) exp((P1 −K2)τ

∗),K2 = M1(
bm1

bl11m1
) exp(bm1 τ∗)



1392 Shuwen Zhang and Dejun Tan

N1 = m2(
Q1

bm22M2
) exp((Q1 −N2)τ

∗), N2 = M2(
bm2

bl22m2
) exp(bm2 τ∗)

where

P1 = bl1 − bm12N2, Q1 = bl2 − bm21K2

Theorem 3.7. If (H1)− (H3) hold and satisfies τ11 = τ22 = 0, b11p11 · b22p22 >

b12p12 · b21p21, bi − bijpij exp[ln(
bi

biipii
) + 2ωbi] > 0, i 6= j, i = 1, 2, j = 1, 2,

(b11p11)
l − (p21b21)

m > 0 and (b22p22)
l − (p12b12)

m > 0.
Then system (1.3) has a positive ω-periodic solution which is globally asymp-
totically stable.

4. Conclusion

In this paper, we propose a periodic two species Gilpin-Ayala competition
system with constant delay and impulsive perturbations. Our results indicate
that under the appropriate linear periodic impulsive perturbations, the impul-
sive competition system with delay argument equation (1.1) remain the behave
of global attractivity of nonimpulsive system (2.2). By using the method of
coincidence degree and constructing suitable Lyapunov functional, we obtain
sufficient conditions for existence and global asympotic stability of positive pe-
riodic solutions of system (1.1). From Theorems 3.1 to 3.7, we can see that
the time delays and pulse have effect on the permanence, existence and global
asympotic stability of positive periodic solutions.

We expect a similar technique to work in higher-dimensional systems with
delay and impulsive perturbations. We leave this investigation for further work.
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