THE DYNAMIC OF TWO-SPECIES IMPULSIVE DELAY GILPIN-AYALA COMPETITION SYSTEM WITH PERIODIC COEFFICIENTS ${ }^{\dagger}$

SHUWEN ZHANG* AND DEJUN TAN

Abstract

In this paper, we consider two-species periodic Gilpin-Ayala competition system with delay and impulsive effect. By using some analysis methods, sufficient conditions for the permanence of the system are derived. Further, we give the conditions of the existence and global asymptotic stable of positive periodic solution.

AMS Mathematics Subject Classification : 34D05, 34D20, 37N25. Key words and phrases : Gilpin-Ayala competition system, Time delay, Periodic solution, Impulsive effects.

1. Introduction

Impulsive differential equations are suitable for the mathematical simulation of evolutionary process whose states are to sudden change at certain moments. Equations of this kind are found in almost every domain of applied sciences[19]. Recently, theory and applications of impulsive delay differential equations have developed[10-13]. Mathematical models of various biological process and phenomena in the study of population dynamics, biology, ecology,etc. can be expressed by impulsive delay differential equations.

In this paper, we consider the following two-species Gilpin-Ayala competition system with delay and impulsive effects.

$$
\left\{\begin{array}{l}
y_{1}^{\prime}(t)=y_{1}(t)\left(b_{1}(t)-b_{11}(t) y_{1}^{\theta_{11}}\left(t-\tau_{11}\right)-b_{12}(t) y_{2}^{\theta_{12}}\left(t-\tau_{12}\right)\right) \tag{1.1}\\
y_{2}^{\prime}(t)=y_{2}(t)\left(b_{2}(t)-b_{21}(t) y_{1}^{\theta_{21}}\left(t-\tau_{21}\right)-b_{22}(t) y_{2}^{\theta_{22}}\left(t-\tau_{22}\right)\right)
\end{array}\right\} \quad t \neq \tau_{k}
$$

[^0]with
\[

$$
\begin{equation*}
\left(y_{1}(t), y_{2}(t)\right)=\left(\varphi_{1}(t), \varphi_{2}(t)\right)=\varphi(t),-\tau \leq t \leq 0, \varphi \in L([-\tau, 0],[0,+\infty)), \varphi(0)>0 \tag{1.2}
\end{equation*}
$$

\]

where $L([-\tau, 0],[0,+\infty)$ denotes the set of Lebesgue measurable functions on $[-\tau, 0], \tau=\max \left\{\tau_{11}, \tau_{12}, \tau_{21}, \tau_{22}\right\} . y_{1}(t), y_{2}(t)$ denotes the concentration of two competition species at time $t, b_{i}(t)(i=1,2)$ is i th growth rate at this time, $b_{i j}(i, j=1,2)$ denotes the competitive coefficient between the i th species and the j th species, $k \in Z_{+}=\{1,2, \cdots\}$.

If system (1.1) without impulsive effect, delays and $\theta_{i j}=1, i \neq j$, then system (1.1) becomes the following competition model:

$$
\left\{\begin{array}{l}
y_{1}^{\prime}(t)=y_{1}(t)\left(b_{1}(t)-b_{11}(t) y_{1}^{\theta_{11}}(t)-b_{12}(t) y_{2}(t)\right) \tag{1.3}\\
y_{2}^{\prime}(t)=y_{2}(t)\left(b_{2}(t)-b_{21}(t) y_{1}(t)-b_{22}(t) y_{2}^{\theta_{22}}(t)\right)
\end{array}\right.
$$

If the coefficients of system (1.2) are positive constants, then system (1.2) was proposed and studied by Gilpin and Ayala [14]. To consider the periodic environmental factors in real population, it is reasonable to study Gilpin-Ayala competition system with periodic coefficients. Fan and Wang [15] have investigated a generalized periodic n-species competition system with delays, they have obtained the sufficient conditions for the existence of positive periodic solution.

As a mathematical model, system (1.1) is more general and includes many ecology models as special. If $\theta_{i j}=1, i, j=1,2$, the system (1.1) becomes the following competition system:

$$
\left\{\begin{array}{l}
y_{1}^{\prime}(t)=y_{1}(t)\left(b_{1}(t)-b_{11}(t) y_{1}\left(t-\tau_{11}\right)-b_{12}(t) y_{2}\left(t-\tau_{12}\right)\right) \tag{1.4}\\
y_{2}^{\prime}(t)=y_{2}(t)\left(b_{2}(t)-b_{21}(t) y_{1}\left(t-\tau_{21}\right)-b_{22}(t) y_{2}\left(t-\tau_{22}\right)\right)
\end{array}\right\} \quad t \neq \tau_{k},
$$

The organization of the paper is as follows. In Section 1, a two-species periodic Gilpin-Ayala competition system with delay and impulsive effect is proposed. In Section 2, we will give some notations and lemmas. In Section 3, we establish sufficient conditions for existence and global asympotic stability of positive periodic solutions of system (1.1). Lastly, we give a brief discussion.

2. Preliminaries

In what follows, for a continuous ω - periodic function $g(t)$, we shall introduce the notations

$$
\bar{g}=\frac{1}{\omega} \int_{0}^{\omega} g(t) d t, g^{l}=\min _{t \in[0, \omega]} g(t), g^{m}=\max _{t \in[0, \omega]} g(t) .
$$

We shall make following hypotheses:
$\left(H_{1}\right) 0<\tau_{1}<\tau_{2}<\cdots<\tau_{k}<\tau_{k+1}<\cdots$ and $\lim _{k \rightarrow+\infty} \tau_{k}=+\infty$.
$\left(H_{2}\right)\left\{h_{i}^{k}\right\}$ is a real sequence and $h_{i}^{k}>-1, i=1,2, k=1,2, \cdots$.
$\left(H_{3}\right)$ The function $b_{i}(t), b_{i j}(t), 1, j=1,2$ are positive continuous ω - periodic functions. $\theta_{i j}, i, j=1,2$ are positive constants, time delays $\tau_{i j}, i, j=1,2$ are
nonnegative constants.
Definition 2.1. Functions $y_{1}(t), y_{2}(t) \in([-\tau, 0],[0,+\infty))$ are said to be solution of system (1.1) on $[-\tau,+\infty)$ if:
(1) $y_{1}(t), y_{2}(t)$ are absolutely continuous on each interval $\left[0, \tau_{1}\right]$ and $\left[\tau_{k}, \tau_{k+1}\right]$, $k=1,2, \cdots$.
(2) $y_{1}\left(\tau_{k}^{+}\right), y_{2}\left(\tau_{k}^{+}\right)$and $y_{1}\left(\tau_{k}^{-}\right), y_{2}\left(\tau_{k}^{-}\right)$exist and $y_{1}\left(\tau_{k}^{+}\right)=y_{1}\left(\tau_{k}^{-}\right), y_{2}\left(\tau_{k}^{+}\right)=$ $y_{2}\left(\tau_{k}^{-}\right)$for any $\tau_{k}, k=1,2, \cdots$.
(3) $y_{1}(t)$ and $y_{2}(t)$ satisfy system (1.1) for almost everywhere in $[0,+\infty)$ and at impulsive points τ_{k} may have discontinuity of the first kind.
Lemma 2.1 ([17]). Consider a single-species periodic logistic system with impulses

$$
\left\{\begin{array}{l}
x^{\prime}(t)=x(t)\left(a(t)-b(t) x^{\theta}(t)\right), t \neq \tau_{k} \tag{2.1}\\
x\left(\tau_{k}^{+}\right)=\left(1+h_{k}\right), \quad t=\tau_{k}, k \in N
\end{array}\right.
$$

where θ is a positive constant, $a(t), b(t)$ are continuous ω-periodic functions with $b(t)>0, \omega \bar{a}>0$ and if there exists a positive integer q such that $t_{k+q}=t_{k}+$ $\omega, h k+q=h_{k}$. Let $x(t)$ be any solution of system (2.1) with the initial value $x\left(0^{+}\right)>0$.
(1) If $\sum_{k=1}^{q} \ln \left(1+h_{k}\right)+\omega \bar{a}>0$, then system (2.1) has a unique ω-periodic solution $x^{*}(t)$, which is globally asymptotically stable in the sense that $\lim _{t \rightarrow+\infty} \mid$ $x(t)-x^{*}(t) \mid=0$;
(2) If $\sum_{k=1}^{q} \ln \left(1+h_{k}\right)+\omega \bar{a}<0$, then $\lim _{t \rightarrow+\infty} x(t)=0$.

Obviously, if there exist a positive integer q such that $\tau_{k+q}=\tau_{k}+\omega, h_{i}^{k+q}=$ $h_{i}^{k}, i=1,2$. and

$$
\sum_{k=1}^{q} \ln \left(1+h_{i}^{k}\right)+\omega \overline{b_{i}}>0, i=1,2
$$

then it follows forms lemma 2.1 that

$$
\left\{\begin{array}{l}
x_{1}^{\prime}(t)=x_{1}(t)\left(b_{1}(t)-b_{11}(t) x_{1}^{\theta_{11}}(t)\right), t \neq \tau_{k} \tag{2.2}\\
x_{1}\left(\tau_{k}^{+}\right)=\left(1+h_{1}^{k}\right), \quad t=\tau_{k}, k \in N
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
x_{2}^{\prime}(t)=x_{2}(t)\left(b_{2}(t)-b_{22}(t) x_{2}^{\theta_{22}}(t)\right), t \neq \tau_{k} \tag{2.3}\\
x_{2}\left(\tau_{k}^{+}\right)=\left(1+h_{2}^{k}\right), \quad t=\tau_{k}, k \in N
\end{array}\right.
$$

have the unique positive globally asymptotically stable ω-periodic solutions $x_{1}^{*}(t)$ and $x_{2}^{*}(t)$ respectively.

We will discuss the existence of positive solution of system (1.1). We give the following assumption:
$\left(H_{4}\right) \prod_{0<\tau_{k}<t}\left(1+h_{i}^{k}\right)$ is an ω-periodic function and there exist four positive constants $m_{i}, M_{i}, i=1,2$ such that $m_{1} \leq \prod_{0<\tau_{k}<t}\left(1+h_{1}^{k}\right) \leq M_{1}$ and $m_{2} \leq$
$\prod_{0<\tau_{k}<t}\left(1+h_{2}^{k}\right) \leq M_{2}$ for $t>0$.
Under the above assumptions $\left(H_{1}\right)-\left(H_{4}\right)$, we consider non-impulsive differential equation:

$$
\left\{\begin{array}{l}
\left.x_{1}^{\prime}(t)=x_{1}(t)\left(b_{1}(t)-b_{11}(t) p_{11}(t) x_{1}^{\theta_{11}}\left(t-\tau_{11}\right)\right)-b_{12}(t) p_{12}(t) x_{2}^{\theta_{12}}\left(t-\tau_{12}\right)\right), \tag{2.4}\\
\left.x_{2}^{\prime}(t)=x_{2}(t)\left(b_{2}(t)-b_{21}(t) p_{21}(t) x_{1}^{\theta_{21}}\left(t-\tau_{21}\right)\right)-b_{22}(t) p_{22}(t) x_{2}^{\theta_{22}}\left(t-\tau_{22}\right)\right)
\end{array}\right.
$$

where

$$
\begin{equation*}
p_{i j}(t)=\prod_{0<\tau_{k}<t-\tau_{i j}}\left(1+h_{j}^{k}\right)^{\theta_{i j}}, i, j=1,2 \tag{2.5}
\end{equation*}
$$

with initial condition $\left(x_{1}(t), x_{2}(t)\right)=\left(\varphi_{1}(t), \varphi_{2}(t)\right)$ for $-\tau \leq t \leq 0, \varphi_{1}(0)>$ $\left.0, \varphi_{2}(0)\right)>0,\left(\varphi_{1}(t), \varphi_{2}(t) \in L([-\tau, 0],[0,+\infty))\right.$.
By a solution $\left(x_{1}(t), x_{2}(t)\right)$ of (2.2) and (2.4), we mean an absolutely continuous functions $x_{1}(t), x_{2}(t)$ defined on $[-\tau, 0]$ which satisfies (2.2) a.e. for $t>0$ and $x_{1}(t)=\varphi(t), x_{2}(t)=\psi(t)$ on $[-\tau, 0]$.

The following lemma will be used in the proofs of our results.
Lemma 2.2. Assume that $\left(H_{1}\right)-\left(H_{4}\right)$ hold. Then
(1) $x_{i}(t),(i=1,2)$ is a solution of system (2.2) on $[-\tau,+\infty)$, then $y_{i}(t)=$ $\prod_{0<\tau_{k}<t}\left(1+h_{i}^{k}\right) x_{i}(t),(i=1,2)$ is a solution of (1.1) on $[-\tau,+\infty)$.
(2) $y_{i}(t),(i=1,2)$ is a solution of system (1.1) on $[-\tau,+\infty)$, then $x_{i}(t)=$ $\prod_{0<\tau_{k}<t}\left(1+h_{i}^{k}\right)^{-1} y_{i}(t),(i=1,2)$ is a solution of (2.2) on $[-\tau,+\infty)$.

Proof. First, we prove (1). Let $x_{i}(t), i=1,2$ be a solution of system (2.2). It is easy to see $y_{i}(t)=\prod_{0<\tau_{k}<t}\left(1+h_{i}^{k}\right) x_{i}(t), i=1,2$ is absolutely continuous on the interval $\left(\tau_{k}, \tau_{k+1}\right]$ and for any $t \neq \tau_{k}, k=1,2, \cdots$,

$$
\begin{aligned}
\prod_{0<\tau_{k}<t}\left(1+h_{1}^{k}\right) x_{1}^{\prime}(t) & =\prod_{0<\tau_{k}<t}\left(1+h_{1}^{k}\right) x_{1}(t)\left(b_{1}(t)-b_{11}(t) p_{11}(t) x_{1}^{\theta_{11}}\left(t-\tau_{11}\right)\right) \\
& \left.-b_{12}(t) p_{12}(t) x_{2}^{\theta_{12}}\left(t-\tau_{12}\right)\right) \\
\prod_{0<\tau_{k}<t}\left(1+h_{2}^{k}\right) x_{2}^{\prime}(t) & =\prod_{0<\tau_{k}<t}\left(1+h_{2}^{k}\right) x_{2}(t)\left(b_{2}(t)-b_{21}(t) p_{21}(t) x_{1}^{\theta_{21}}\left(t-\tau_{21}\right)\right) \\
& \left.-b_{22}(t) p_{22}(t) x_{2}^{\theta_{22}}\left(t-\tau_{22}\right)\right)
\end{aligned}
$$

that is

$$
\begin{aligned}
& y_{1}^{\prime}(t)=y_{1}(t)\left(b_{1}(t)-b_{11}(t) y_{1}^{\theta_{11}}\left(t-\tau_{11}\right)-b_{12}(t) y_{2}^{\theta_{12}}\left(t-\tau_{12}\right)\right) \\
& y_{2}^{\prime}(t)=y_{2}(t)\left(b_{2}(t)-b_{21}(t) y_{1}^{\theta_{21}}\left(t-\tau_{21}\right)-b_{22}(t) y_{2}^{\theta_{22}}\left(t-\tau_{22}\right)\right)
\end{aligned}
$$

On the other hand, for every $\tau_{k}, k=1,2, \cdots$,

$$
\begin{aligned}
& y_{1}\left(\tau_{k}^{+}\right)=\lim _{t \rightarrow \tau_{k}^{+}} \prod_{0<\tau_{j}<t}\left(1+h_{1}^{j}\right) x_{1}(t)=\prod_{0<\tau_{j} \leq \tau_{k}}\left(1+h_{1}^{k}\right) x_{1}\left(\tau_{k}\right)=\left(1+h_{1}^{k}\right) \prod_{0<\tau_{j}<\tau_{k}} x_{1}\left(\tau_{k}\right), \\
& y_{2}\left(\tau_{k}^{+}\right)=\lim _{t \rightarrow \tau_{k}^{+}} \prod_{0<\tau_{j}<t}\left(1+h_{2}^{j}\right) x_{2}(t)=\prod_{0<\tau_{j} \leq \tau_{k}}\left(1+h_{2}^{k}\right) x_{2}\left(\tau_{k}\right)=\left(1+h_{2}^{k}\right) \prod_{0<\tau_{j}<\tau_{k}} x_{2}\left(\tau_{k}\right),
\end{aligned}
$$

and

$$
y_{1}\left(\tau_{k}\right)=\prod_{0<\tau_{j}<\tau_{k}}\left(1+h_{1}^{j}\right) x_{1}\left(\tau_{k}\right), y_{2}\left(\tau_{k}\right)=\prod_{0<\tau_{j}<\tau_{k}}\left(1+h_{2}^{j}\right) x_{2}\left(\tau_{k}\right)
$$

Thus, for every $k=1,2, \cdots$,

$$
\begin{equation*}
y_{1}\left(\tau_{k}^{+}\right)=\left(1+h_{1}^{k}\right) y_{1}\left(\tau_{k}\right), y_{2}\left(\tau_{k}^{+}\right)=\left(1+h_{2}^{k}\right) y_{2}\left(\tau_{k}\right) \tag{2.6}
\end{equation*}
$$

Next, we prove (2). Since $y_{1}(t), y_{2}(t)$ is absolutely continuous on $\left(\tau_{k}, \tau_{k+1}\right.$] and, in view of (2.6), it follows that for any $k=1,2, \cdots$,

$$
\begin{aligned}
& x_{1}\left(\tau_{k}^{+}\right)=\prod_{\tau^{*} \leq \tau_{j} \leq \tau_{k}}\left(1+h_{1}^{j}\right)^{-1} y_{1}\left(\tau_{k}^{+}\right)=\prod_{\tau^{*} \leq \tau_{j}<\tau_{k}}\left(1+h_{1}^{j}\right)^{-1} y_{1}\left(\tau_{k}\right), \\
& x_{2}\left(\tau_{k}^{+}\right)=\prod_{\tau^{*} \leq \tau_{j} \leq \tau_{k}}\left(1+h_{2}^{j}\right)^{-1} y_{2}\left(\tau_{k}^{+}\right)=\prod_{\tau^{*} \leq \tau_{j}<\tau_{k}}\left(1+h_{2}^{j}\right)^{-1} y_{2}\left(\tau_{k}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& x_{1}\left(\tau_{k}^{-}\right)=\prod_{\tau^{*} \leq \tau_{j} \leq \tau_{k-1}}\left(1+h_{1}^{j}\right)^{-1} y_{1}\left(\tau_{k}^{-}\right)=\prod_{\tau^{*} \leq \tau_{j}<\tau_{k}}\left(1+h_{1}^{j}\right)^{-1} y_{1}\left(\tau_{k}\right)=x_{1}\left(\tau_{k}\right), \\
& x_{2}\left(\tau_{k}^{-}\right)=\prod_{\tau^{*} \leq \tau_{j} \leq \tau_{k-1}}\left(1+h_{2}^{j}\right)^{-1} y_{2}\left(\tau_{k}^{-}\right)=\prod_{\tau^{*} \leq \tau_{j}<\tau_{k}}\left(1+h_{2}^{j}\right)^{-1} y_{2}\left(\tau_{k}\right)=x_{2}\left(\tau_{k}\right),
\end{aligned}
$$

where $k=1,2, \cdots$. Which implies that $x_{1}(t), x_{2}(t)$ is continuous on $[\tau,+\infty)$. It is easy to prove that $x_{1}(t), x_{2}(t)$ is absolutely continuous on $[\tau,+\infty)$. Now, one can easily obtain $x_{1}(t)=\prod_{0 \leq \tau_{k}<t}\left(1+h_{1}^{k}\right)^{-1} y_{1}(t)$,
$x_{2}(t)=\prod_{0 \leq \tau_{k}<t}\left(1+h_{2}^{k}\right)^{-1} y_{2}(t)$ is a solution of (2.2). This completes the proof.
Let X, Z be normed vector space, be a linear mapping, and $N: X \rightarrow Z$ be a continuous mapping. The mapping L will be called a Fredholm mapping of index zero if $\operatorname{dim} \operatorname{Ker} L=$ codim $\operatorname{Im} L<+\infty$ and $\operatorname{Im} L$ is closed in Z. If L is a Fredholm mapping of index zero there exist continuous projectors $P: X \rightarrow X$ and $Q: Z \rightarrow Z$ such that $\operatorname{ImP}=\operatorname{Ker} L, \operatorname{Ker} Q=\operatorname{Im} L=\operatorname{Im}(I-Q)$. It follows that $L \mid \operatorname{domL} \cap \operatorname{Ker} P:(I-P) X \rightarrow I m L$ is invertible. We denote the inverse of that map by K_{p}. If Ω is an open bounded subset of X, the mapping N will be called L-compact on $\bar{\Omega}$ if $Q N(\bar{\Omega})$ is bounded and $K_{p}(I-Q) N: \bar{\Omega} \rightarrow X$ is compact. Since $\operatorname{Im} Q$ is isomorphic to $K e r L$, there exist isomorphisms $J: \operatorname{Im} Q \rightarrow K e r L$.

In the proof of our existence theorem below, we will use the continuation theorem of Gaines and mawhin [16].

Lemma 2.3. Let L be a Fredholm mapping of index zero and N be L-compact on $\bar{\Omega}$. Suppose
(a) For each $\lambda \in(0,1)$, every solution x of $L x=\lambda N x$ is such that $x \in \partial \Omega$.
(b) $Q N x \neq 0$ for each $x \in \partial \Omega \cap \operatorname{Ker} L$ and $\operatorname{deg}\{J Q N, \Omega \cap \operatorname{Ker} L, 0\} \neq 0$,

Then the equation $L x=N x$ has at least one solution lying in $\operatorname{DomL} \cap \bar{\Omega}$.

3. Main results

In this section, we will prove the permanence of the system (1.1) and give the conditions for the existence and global asymptotic stability of positive periodic solution of system (1.1).
Theorem 3.1. Assume that $\left(H_{1}-H_{3}\right)$ and $\tau_{i i}=0, i=1,2$, hold. If there exist a positive integer q such that $\tau_{k+q}=\tau_{k}+\omega, h_{i}^{k+q}=h_{i}^{k}, i=1,2$ and

$$
\sum_{k=1}^{q} \ln \left(1+h_{1}^{k}\right)+\omega \overline{b_{1}-b_{12} x_{2}^{*}(t)}>0, \sum_{k=1}^{q} \ln \left(1+h_{2}^{k}\right)+\omega \overline{b_{2}-b_{21} x_{1}^{*}(t)}>0
$$

Then system (1.1) is permanent. where $x_{i}^{*}(t), i=1,2$ are described above.
Theorem 3.2. Assume that $\left(H_{1}-H_{3}\right)$ and $\tau_{i i}=0, i=1,2$, hold. If there exist a positive integer q such that $\tau_{k+q}=\tau_{k}+\omega, h_{i}^{k+q}=h_{i}^{k}, i=1,2$ and $\sum_{k=1}^{q} \ln \left(1+h_{i}^{k}\right)+\omega \overline{b_{i}} /<0$. Then system (1.1) is extinct.
Theorem 3.3. For system (1.1), we assume that $\left(H_{1}\right)-\left(H_{4}\right)$ hold and $P_{1}>$ $0, Q_{1}>0$. If t is large enough, then $K_{1} \leq y_{1}(t) \leq K_{2}, N_{1} \leq y_{2}(t) \leq N_{2}$, Where

$$
\begin{aligned}
& K_{1}=m_{1}\left(\frac{P_{1}}{b_{11}^{m} M_{1}^{\theta_{11}}}\right)^{\frac{1}{\theta_{11}}} \exp \left(\left(P_{1}-K_{2}\right) \tau^{*}\right), K_{2}=M_{1}\left(\frac{b_{1}^{m}}{b_{11}^{l} m_{1}^{\theta_{11}}}\right)^{\frac{1}{\theta_{11}}} \exp \left(b_{1}^{m} \tau^{*}\right) \\
& N_{1}=m_{2}\left(\frac{Q_{1}}{b_{22}^{m} M_{2}^{\theta_{22}}}\right)^{\frac{1}{\theta_{22}}} \exp \left(\left(Q_{1}-N_{2}\right) \tau^{*}\right), N_{2}=M_{2}\left(\frac{b_{2}^{m}}{b_{22}^{l} m_{2}^{\theta_{22}}}\right)^{\frac{1}{\theta_{22}}} \exp \left(b_{2}^{m} \tau^{*}\right)
\end{aligned}
$$

where

$$
P_{1}=b_{1}^{l}-b_{12}^{m} N_{2}^{\theta_{12}}, Q_{1}=b_{2}^{l}-b_{21}^{m} K_{2}^{\theta_{21}}
$$

Proof. From system (2.2), we have

$$
\begin{align*}
& x_{1}^{\prime}(t) \leq x_{1}(t)\left(b_{1}(t)-b_{11}(t) p_{11}(t) x_{1}^{\theta_{11}}\left(t-\tau_{11}\right)\right) \leq x_{1}(t)\left(b_{1}^{m}-b_{11}^{l} m_{1}^{\theta_{11}} x_{1}^{\theta_{11}}\left(t-\tau_{11}\right)\right) \tag{3.1}\\
& x_{2}^{\prime}(t) \leq x_{2}(t)\left(b_{2}(t)-b_{22}(t) p_{22}(t) x_{2}^{\theta_{22}}\left(t-\tau_{22}\right)\right) \leq x_{2}(t)\left(b_{2}^{m}-b_{22}^{l} m_{2}^{\theta_{22}} x_{2}^{\theta_{22}}\left(t-\tau_{22}\right)\right) \tag{3.2}
\end{align*}
$$

Take

$$
K_{2}^{*}=\left(\frac{b_{1}^{m}}{b_{11}^{l} m_{1}^{\theta_{11}}}\right)^{\frac{1}{\theta_{11}}}, N_{2}^{*}=\left(\frac{b_{2}^{m}}{b_{22}^{l} m_{2}^{\theta_{22}}}\right)^{\frac{1}{\theta_{22}}}
$$

Firstly, we prove $y_{1}(t) \leq K_{2}, y_{2}(t) \leq N_{2}$.
Case 1. Suppose $x_{1}(t)$ is oscillatory K_{2}^{*}. That is, there exist a time sequence t_{k} and $\tau^{*}<t_{1}<t_{2}<\cdots<t_{n}<\cdots$ such that $\lim _{k \rightarrow \infty} t_{k}=\infty$ and $x_{1}\left(t_{k}\right)=K_{1}^{*}$. Let $x_{1}\left(\xi_{k}\right)$ be maximum of $x_{1}(t)$ on $\left(t_{k}, t_{k+1}\right), k=1,2, \cdots$ and $x_{1}\left(\xi_{k}\right)>K_{1}^{*}$. We have

$$
0=\left.\frac{d x_{1}(t)}{d t}\right|_{t=\xi_{k}} \leq x_{1}\left(\xi_{k}\right) b_{11}^{l} m_{1}^{\theta_{11}}\left(k_{2}^{*}-x_{1}^{\theta_{11}}\left(\xi_{k}-\tau^{*}\right)\right)
$$

This lead to

$$
x_{1}\left(\xi_{k}-\tau^{*}\right) \leq K_{2}^{*}
$$

Since $x_{1}\left(\xi_{k}\right) \geq K_{2}^{*}$ and $x_{1}\left(\xi_{k}-\tau^{*}\right) \leq K_{2}^{*}$, then let η be the first zero of $x_{1}(t)-K_{2}^{*}$ in $\left[\xi_{k}-\tau^{*}, \xi_{k}\right)$, that is, $x_{1}(\eta)=K_{2}^{*}$. By integrating (3.1) from η to ξ_{k}, we obtain

$$
\ln \frac{x_{1}\left(\xi_{k}\right)}{x_{1}(\eta)} \leq \int_{\eta}^{\xi_{k}}\left[b_{1}^{m}-b_{11}^{l} m_{1}^{\theta_{11}} x_{1}\left(t-\tau_{11}\right)\right] d t \leq \int_{\eta}^{\xi_{k}} b_{1}^{m} d t \leq b_{1}^{m} \tau^{*}
$$

Therefore, we have

$$
\left.x_{1} \xi_{k}\right) \leq K_{2}^{*} \exp \left(b_{1}^{m} \tau^{*}\right) .
$$

so

$$
\begin{equation*}
x_{1}(t) \leq K_{2}^{*} \exp \left(b_{1}^{m} \tau^{*}\right), t>t_{1}+2 \tau^{*} \tag{3.3}
\end{equation*}
$$

By lemma 2.1 and (3.3), we have

$$
y_{1}(t)=\prod_{0<\tau_{k}<t}\left(1+h_{1}^{k}\right) x_{1}(t)<M_{1} k_{2}^{*} \exp \left(b_{1}^{m} \tau^{*}\right)=K_{2}, t>t_{1}+2 \tau^{*} .
$$

Case II. Suppose $x_{1}(t)$ is not oscillatory about k_{2}^{*}. Then for any $\varepsilon>0$, there exists a constant $T_{1}>0$, such that

$$
x_{1}(t)<K_{2}^{*}+\varepsilon, t>T_{1} .
$$

Therefore, there exist a constant $T_{2}>0$ such that

$$
x_{1}(t)<k_{2}^{*} \exp \left(b_{1}^{m} \tau^{*}\right), t>T_{2} .
$$

By lemma 2.1, we have

$$
y_{1}(t) \leq M_{1} k_{2}^{*} \exp \left(b_{1}^{m} \tau^{*}\right)=K_{2} .
$$

Similarly, from (3.2) there exist a constant $T_{3}>0$ such that

$$
y_{2}(t) \leq M_{2} N_{2}^{*} \exp \left(b_{2}^{m} \tau^{*}\right)=N_{2} .
$$

Further, we prove $y_{1}(t) \geq K_{1}, y_{2}(t) \geq N_{1}$.
From system (2.2), we have

$$
\begin{align*}
x_{1}^{\prime}(t) & \left.\geq x_{1}(t)\left(P_{1}-b_{11}^{m} M_{1}^{\theta_{11}} x_{1}^{\theta_{11}}\left(t-\tau_{11}\right)\right)\right) \tag{3.4}\\
x_{2}^{\prime}(t) & \geq x_{2}(t)\left(Q_{1}-b_{22}^{m} M_{2}^{\theta_{22}} x_{2}^{\theta_{22}}\left(t-\tau_{22}\right)\right) \tag{3.5}
\end{align*}
$$

Similarly, from (3.4) and (3.5) there exist a constant $T_{4}>0, T_{5}>0$ such that

$$
\begin{align*}
& x_{1}(t) \geq\left(\frac{P_{1}}{b_{11}^{m} M_{1}^{\theta_{11}}}\right)^{\frac{1}{\theta_{11}}} \exp \left(\left(P_{1}-K_{2}\right) \tau^{*}\right), t>T_{4}, \tag{3.6}\\
& x_{2}(t) \geq\left(\frac{Q_{1}}{b_{22}^{m} M_{2}^{\theta_{22}}}\right)^{\frac{1}{\theta_{22}}} \exp \left(\left(Q_{1}-N_{2}\right) \tau^{*}\right), t>T_{5} \tag{3.7}
\end{align*}
$$

Then by lemma 2.1 and (3.6) (3.7), we have

$$
\begin{aligned}
& y_{1}(t) \geq m_{1}\left(\frac{P_{1}}{b_{11}^{m} M_{1}^{\theta_{11}}}\right)^{\frac{1}{\theta_{11}}} \exp \left(\left(P_{1}-K_{2}\right) \tau^{*}\right)=K_{1}, t>T_{4}, \\
& y_{2}(t) \geq m_{2}\left(\frac{Q_{1}}{b_{22}^{m} M_{2}^{\theta_{22}}}\right)^{\frac{1}{\theta_{22}}} \exp \left(\left(Q_{1}-N_{2}\right) \tau^{*}\right)=N_{1}, t>T_{5} .
\end{aligned}
$$

The proof is completed.
Theorem 3.4. If $\left(H_{1}\right)-\left(H_{4}\right)$ hold and assume that the system of algebraic equations

$$
\begin{align*}
& \overline{b_{11} p_{11}} x_{1}^{\theta_{11}}+\overline{b_{12} p_{12}} x_{2}^{\theta_{12}}=\overline{b_{1}} \tag{*}\\
& \overline{b_{21} p_{21}} x_{1}^{\theta_{21}}+\overline{b_{22} p_{22}} x_{2}^{\theta_{22}}=\overline{b_{2}}
\end{align*}
$$

has finite solution $x^{*}=\left(x_{1}^{*}, x_{2}^{*}\right)$ with $x_{1}^{*}>0, x_{2}^{*}>0$ and $\sum_{x^{*}} \operatorname{sign} J\left(x^{*}\right) \neq 0$. In addition $\overline{b_{i}}-\overline{b_{i j} p_{i j}} \exp \left[\frac{\theta_{i j}}{\theta_{i i}} \ln \left(\frac{\overline{b_{i}}}{\overline{b_{i i} p_{i i}}}\right)+2 \theta_{i j} \omega \overline{b_{i}}\right]>0, i \neq j, i=1,2, j=1,2$.
Then system (1.1) exists at least a periodic solution.

Proof. We make the change of variables

$$
\begin{equation*}
x_{1}(t)=\exp \left(u_{1}(t)\right), x_{2}(t)=\exp \left(u_{2}(t)\right) \tag{3.8}
\end{equation*}
$$

Then system (2.2) can be rewritten as

$$
\left\{\begin{array}{l}
u_{1}^{\prime}(t)=b_{1}(t)-b_{11}(t) p_{11}(t) \exp \left(\theta_{11} u_{1}\left(t-\tau_{11}\right)\right)-b_{12}(t) p_{12}(t) \exp \left(\theta_{12} u_{2}\left(t-\tau_{12}\right)\right), \tag{3.9}\\
u_{2}^{\prime}(t)=b_{2}(t)-b_{21}(t) p_{21}(t) \exp \left(\theta_{21} u_{1}\left(t-\tau_{21}\right)\right)-b_{22}(t) p_{22}(t) \exp \left(\theta_{22} u_{2}\left(t-\tau_{22}\right)\right) .
\end{array}\right.
$$

Let

$$
X=Z=\left\{u(t)=\left(u_{1}(t), u_{2}(t)\right) \in C\left(R, R^{2}\right), u(t+\omega)=u(t)\right\}
$$

Then X and Z are both Banach spaces with the usual norm

$$
\|u\|=\max _{t \in[0, \omega]}\left|u_{1}(t)\right|+\max _{t \in[0, \omega]}\left|u_{2}(t)\right|
$$

for any $u \in X($ or $Z)$.
Let

$$
\begin{gathered}
N u(t)=\binom{b_{1}(t)-b_{11}(t) p_{11}(t) \exp \left(\theta_{11} u_{1}\left(t-\tau_{11}\right)\right)-b_{12}(t) p_{12}(t) \exp \left(\theta_{12} u_{2}\left(t-\tau_{12}\right)\right)}{b_{2}(t)-b_{21}(t) p_{21}(t) \exp \left(\theta_{21} u_{1}\left(t-\tau_{21}\right)\right)-b_{22}(t) p_{22}(t) \exp \left(\theta_{22} u_{2}\left(t-\tau_{22}\right)\right)}, \\
L u=u^{\prime}, P x=\frac{1}{\omega} \int_{0}^{\omega} u(t) d t, u \in X, Q z=\frac{1}{\omega} \int_{0}^{\omega} z(t) d t, z \in Z .
\end{gathered}
$$

Obviously,

$$
\operatorname{Ker} L=\left\{u \mid u \in X, u=h, h \in R^{2}\right\}, \operatorname{Im} L=\left\{z \mid z \in Z, \int_{0}^{\omega} z(t) d t=0\right\}
$$

and $\operatorname{dim} \operatorname{ker} L=$ codim $\operatorname{ImL}=2$. Since $\operatorname{Im} L$ is closed in Z, L is a Fredholm mapping of index zero. It is not difficult to see P and Q are continuous projectors such that $\operatorname{ImP}=\operatorname{Ker} L, \operatorname{Ker} Q+\operatorname{Im} L=\operatorname{Im}(I-Q)$. Moreover, the generalized inverse (to L) $K_{p}: I m L \rightarrow \operatorname{Ker} P \cap \operatorname{DomL}$ is given by $K_{p}(z)=\int_{0}^{t} z(s) d s-\frac{1}{\omega} \iint_{0}^{\omega} \int_{0}^{t} d s d t$.

$$
\begin{aligned}
& \text { Thus, } \\
& \qquad Q N u=\frac{1}{\omega} \int_{0}^{\omega} N u(t) d t \\
& K_{p}(I-Q) N u(t)+\int_{0}^{t} N u(s) d s-\frac{1}{\omega} \int_{0}^{\omega} \int_{0}^{t} N u(s) d s d t-\left(\frac{t}{\omega}-\frac{1}{2}\right) \int_{0}^{\omega} N u(s) d s .
\end{aligned}
$$

It is obvious that $Q N$ and $K_{p}(I-Q) N$ are continuous, and using the ArzelaAscoli, it is easy to show that $K_{p}(I-Q) N(\bar{\Omega})$ is compact for any open bounded
set $\Omega \subset X$. Furthermore, $Q N(\bar{\Omega}$ is bounded. Hence, N is L-compact on $\bar{\Omega}$ for any open bounded set $\Omega \subset X$. Corresponding to the equation $L x=\lambda N x, \lambda \in$ $(0,1)$, we have

$$
\begin{align*}
& u_{1}^{\prime}(t)=\lambda\left(b_{1}(t)-b_{11}(t) p_{11}(t) \exp \left(\theta_{11} u_{1}\left(t-\tau_{11}\right)\right)-b_{12}(t) p_{12}(t) \exp \left(\theta_{12} u_{2}\left(t-\tau_{12}\right)\right)\right), \tag{3.10}\\
& u_{2}^{\prime}(t)=\lambda\left(b_{2}(t)-b_{21}(t) p_{21}(t) \exp \left(\theta_{21} u_{1}\left(t-\tau_{21}\right)\right)-b_{22}(t) p_{22}(t) \exp \left(\theta_{22} u_{2}\left(t-\tau_{22}\right)\right)\right) .
\end{align*}
$$

Suppose that $u(t) \in X$ is a solution of (3.10) for a certain $\lambda \in(0,1)$. Integrating (3.10) from 0 to ω, we obtain

$$
\begin{equation*}
\int_{0}^{\omega}\left[b_{11}(t) p_{11}(t) \exp \left(\theta_{11} u_{1}\left(t-\tau_{11}\right)\right)+b_{12}(t) p_{12}(t) \exp \left(\theta_{12} u_{2}\left(t-\tau_{12}\right)\right] d t=\omega \overline{b_{1}}\right. \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{\omega}\left[b_{21}(t) p_{21}(t) \exp \left(\theta_{21} u_{1}\left(t-\tau_{21}\right)\right)+b_{22}(t) p_{22}(t) \exp \left(\theta_{22} u_{2}\left(t-\tau_{22}\right)\right] d t=\omega \overline{b_{2}}\right. \tag{3.12}
\end{equation*}
$$

From (3.10), (3.11) and (3.12), we have

$$
\begin{align*}
& \int_{0}^{\omega}\left|u_{1}^{\prime}(t)\right| d t \\
& \leq \lambda\left[\int_{0}^{\omega} b_{1}(t) d t+\int_{0}^{\omega}\left[b_{11}(t) p_{11}(t) \exp \left(\theta_{11} u_{1}\left(t-\tau_{11}\right)\right)\right.\right. \tag{3.13}\\
& \left.\quad+b_{12}(t) p_{12}(t) \exp \left(\theta_{12} u_{2}\left(t-\tau_{12}\right)\right] d t\right]<2 \omega \overline{b_{1}} \\
& \quad \int_{0}^{\omega}\left|u_{2}^{\prime}(t)\right| d t \\
& \leq \lambda\left[\int_{0}^{\omega} b_{2}(t) d t+\int_{0}^{\omega}\left[b_{21}(t) p_{21}(t) \exp \left(\theta_{21} u_{1}\left(t-\tau_{21}\right)\right)\right.\right. \tag{3.14}\\
& \left.\quad+b_{22}(t) p_{22}(t) \exp \left(\theta_{22} u_{2}\left(t-\tau_{22}\right)\right] d t\right]<2 \omega \overline{b_{2}}
\end{align*}
$$

Since $u(t) \in X$, there exist $\xi_{i}, \zeta_{i} \in[0, \omega], i=1,2$ such that

$$
u_{i}\left(\xi_{i}\right)=\min _{t \in[0, \omega]} u_{i}(t), u_{i}\left(\zeta_{i}\right)=\max _{t \in[0, \omega]} u_{i}(t) .
$$

From (3.11) and (3.12), we have

$$
\begin{aligned}
& \omega \overline{b_{i}} \geq \int_{0}^{\omega} b_{i i}(t) p_{i i}(t) \exp \left(\theta_{i i} u_{i}\left(t-\tau_{i i}\right)\right) d t= \\
& \int_{-\tau_{i i}}^{\omega-} b_{i i}\left(s+\tau_{i i}\right) p_{i i}\left(s+\tau_{i i}\right) \exp \left(\theta_{i i} u_{i}(s)\right) d s \geq \omega \overline{b_{i i} p_{i i}} \exp \left(\theta_{i i} u_{i}\left(\xi_{i}\right)\right), i=1,2
\end{aligned}
$$

Moreover

$$
u_{i}\left(\xi_{i}\right) \leq \frac{1}{\theta_{i i}} \ln \left[\frac{\overline{b_{i}}}{\overline{b_{i i} p_{i i}}}\right], i=1,2
$$

Then

$$
\begin{equation*}
u_{i}(t) \leq u_{i}\left(\xi_{i}\right)+\int_{0}^{\omega}\left|u_{i}^{\prime}(t)\right| d t \leq \frac{1}{\theta_{i i}} \ln \left[\frac{\overline{b_{i}}}{\overline{b_{i i} p_{i i}}}\right]+2 \omega \overline{b_{i}} \doteq R_{i}, i=1,2 . \tag{3.15}
\end{equation*}
$$

On the other hand, from (3.11) and (3.12), we obtain $\int_{-\tau_{i i}}^{\omega-\tau_{i i}} b_{i i}\left(s+\tau_{i i}\right) p_{i i}(s+$ $\left.\tau_{i i}\right) \exp \left(\theta_{i i} u_{i}(s)\right) d s=\omega \overline{b_{i}}-\int_{-\tau_{i j}}^{\omega-\tau_{i j}} b_{i j}\left(s+\tau_{i j}\right) p_{i j}\left(s+\tau_{i j}\right) \exp \left(\theta_{i j} u_{j}(s)\right) d s i \neq j, i=$ $1,2, j=1,2$. Then we get

$$
\overline{{b_{i i} p_{i i}}^{\exp }\left(\theta_{i i} u_{i}\left(\zeta_{i}\right)\right) \geq \overline{b_{i}}-\overline{b_{i j} p_{i j}} \exp \left(\theta_{i j} R_{j}\right), i \neq j, i=1,2, j=1,2 . . .2 .}
$$

which implies

$$
\begin{equation*}
u_{i}\left(\zeta_{i}\right) \geq \frac{1}{\theta_{i i}} \ln \left\{\frac{1}{\overline{b_{i i} p_{i i}}}\left(\overline{b_{i}}-\overline{b_{i j} p_{i j}} \exp \left[\frac{\theta_{i j}}{\theta_{i i}} \ln \left(\frac{\overline{b_{i}}}{\overline{b_{i i} p_{i i}}}\right)+2 \theta_{i j} \omega \overline{b_{i}}\right]\right)\right\} \doteq S_{i}, \tag{3.16}
\end{equation*}
$$

where $i \neq j, i=1,2, j=1,2$. From (3.13),(3.14) and (3.16), we have

$$
\begin{equation*}
u_{i}(t) \geq u_{i}\left(\zeta_{i}\right)-\int_{0}^{\omega}\left|u_{i}^{\prime}(t)\right| d t>S_{i}-2 \omega \overline{b_{i}}, i=1,2 . \tag{3.17}
\end{equation*}
$$

which,together with (3.15)implies

$$
\max _{t \in[0, \omega]}\left|u_{i}(t)\right|<\max \left\{\left|R_{i}\right|,\left|S_{i}-2 \omega \overline{b_{i}}\right|\right\}=F_{i}, i=1,2
$$

Clearly, $F_{i}, i=1,2$ are not dependent on the choice of λ. We can take sufficiently large M such that $M>F_{1}+F_{2}$ and the solution of equation $(*)$ satisfies $M>$ $\left|x_{1}^{*}\right|+\left|x_{2}^{*}\right|$.
Set $\Omega \doteq\left\{u=\left(u_{1}, u_{2}\right) \in X \mid\|u\|<M\right\}$. It is clear that Ω satisfies the requirement (a) in Lemma 2.2, When $u \in \partial \Omega \cap \operatorname{Ker} L=\partial \Omega \cap R^{2}, u$ is a constant vector in R^{2} with $\|u\|=M$. Then

$$
Q N u=\binom{\overline{b_{1}}-\overline{b_{11} p_{11}} \exp \left(\theta_{11} u_{1}\right)-\overline{b_{12} p_{12}} \exp \left(\theta_{12} u_{2}\right)}{\overline{b_{2}}-\overline{b_{21} p_{21}} \exp \left(\theta_{21} u_{1}\right)-\overline{b_{22} p_{22}} \exp \left(\theta_{22} u_{2}\right)} \neq 0
$$

The requirement (b) in Lemma 2.2 is also satisfied. In view of the assumption in Theorem 3.2, it is easy prove that

$$
\operatorname{deg}\{J Q N u, \Omega \cap \operatorname{Ker} L, 0\} \neq 0
$$

By now all the assumptions required in Lemma 2.2 hold. It follows by Lemma 2.2 that system (3.9) has a ω - periodic solution $u^{*}(t)=\left(u_{1}^{*}(t), u_{2}^{*}(t)\right) \in \bar{\Omega}$. By the change of $x_{i}^{*}(t)=\exp \left(u_{i}^{*}(t)\right), i=1,2$, we obtain that $x^{*}(t)=\left(x_{1}^{*}(t), x_{2}^{*}(t)\right)$ is a positive ω - periodic solution of (2.2).
By Lemma 2.1 and $y_{i}^{*}(t)=\prod_{0<\tau_{k}<t}\left(1+h_{i}^{k}\right) x_{i}^{*}(t), i=1,2$, then system (1.1) has an $\omega-$ positive periodic solution $y^{*}(t)=\left(y_{i}^{*}(t), y_{i}^{*}(t)\right)$. The proof is complete.

Theorem 3.5. If the conditions of Theorem (3.2) are hold. Furthermore $\tau_{11}=$ $\tau_{22}=0, \theta_{12}=\theta_{22}, \theta_{11}=\theta_{21}$ and $\left(b_{11} p_{11}\right)^{l}-\left(p_{21} b_{21}\right)^{m}>0,\left(b_{22} p_{22}\right)^{l}-\left(p_{12} b_{12}\right)^{m}>$ 0 . Then system (1.1) has a unique ω-periodic solution $\left(y_{1}^{*}(t), y_{2}^{*}(t)\right)$ which is globally asymptotically stable.

Proof. Suppose $x^{*}(t)=\left(x_{1}^{*}(t), x_{2}^{*}(t)\right)$ is a positive ω-periodic solution of system (2.2). We need to show that $x^{*}(t)$ is globally asymptotically stable. Consider a Lyapunov functional $V(t)$ defined by

$$
\begin{aligned}
& V(t)=\left|\ln x_{1}(t)-\ln x_{1}^{*}(t)\right|+\left|\ln x_{2}(t)-\ln x_{2}^{*}(t)\right|+ \\
& \int_{t-\tau_{12}}^{t} b_{12}\left(s+\tau_{12}\right) p_{12}\left(s+\tau_{12}\right)\left|\left(x_{2}(s)\right)^{\theta_{22}}-\left(x_{2}^{*}(s)\right)^{\theta_{22}}\right| d s+ \\
& \int_{t-\tau_{21}}^{t} b_{21}\left(s+\tau_{21}\right) p_{21}\left(s+\tau_{21}\right)\left|\left(x_{1}(s)\right)^{\theta_{11}}-\left(x_{1}^{*}(s)\right)^{\theta_{11}}\right| d s, t \geq 0 .
\end{aligned}
$$

By calculating and estimating the upper right derivative of $V(t)$ along the solution of (2.2), we have

$$
\begin{aligned}
& D^{+} V(t) \leq-\left(b_{11}(t) p_{11}(t)-p_{21}\left(t+\tau_{21}\right) b_{21}\left(t+\tau_{21}\right)\right)\left|\left(x_{1}(t)\right)^{\theta_{11}}-\left(x_{1}^{*}(t)\right)^{\theta_{11}}\right| \\
& -\left(b_{22}(t) p_{22}(t)-p_{12}\left(t+\tau_{12}\right) b_{12}\left(t+\tau_{12}\right)\right)\left|\left(x_{2}(t)\right)^{\theta_{22}}-\left(x_{2}^{*}(t)\right)^{\theta_{22}}\right| \\
& \leq-\left(\left(b_{11} p_{11}\right)^{l}-\left(p_{21} b_{21}\right)^{m}\right)\left|\left(x_{1}(t)\right)^{\theta_{11}}-\left(x_{1}^{*}(t)\right)^{\theta_{11}}\right| \\
& -\left(\left(b_{22} p_{22}\right)^{l}-\left(p_{12} b_{12}\right)^{m}\right)\left|\left(x_{2}(t)\right)^{\theta_{22}}-\left(x_{2}^{*}(t)\right)^{\theta_{22}}\right|, t \geq 0 .
\end{aligned}
$$

Then

$$
\begin{equation*}
D^{+} V(t) \leq-\mu\left(\left|\left(x_{1}(t)\right)^{\theta_{11}}-\left(x_{1}^{*}(t)\right)^{\theta_{11}}\right|+\left|\left(x_{2}(t)\right)^{\theta_{22}}-\left(x_{2}^{*}(t)\right)^{\theta_{22}}\right|\right) \tag{3.18}
\end{equation*}
$$

where

$$
\mu=\min \left\{\left(b_{11} p_{11}\right)^{l}-\left(p_{21} b_{21}\right)^{m},\left(b_{22} p_{22}\right)^{l}-\left(p_{12} b_{12}\right)^{m}\right\}
$$

Integrating from 0 to t on both sides of (3.18) leads to:

$$
\begin{equation*}
V(t)+\mu \int_{0}^{t}\left(\left|\left(x_{1}(s)\right)^{\theta_{11}}-\left(x_{1}^{*}(s)\right)^{\theta_{11}}\right|+\left|\left(x_{2}(s)\right)^{\theta_{22}}-\left(x_{2}^{*}(s)\right)^{\theta_{22}}\right|\right) d s \leq V(0)<+\infty, t \geq 0 \tag{3.19}
\end{equation*}
$$

then
$\int_{0}^{t}\left(\left|\left(x_{1}(s)\right)^{\theta_{11}}-\left(x_{1}^{*}(s)\right)^{\theta_{11}}\right|+\left|\left(x_{2}(s)\right)^{\theta_{22}}-\left(x_{2}^{*}(s)\right)^{\theta_{22}}\right|\right) d s \leq \frac{V(0)}{\mu}<+\infty, t \geq 0$
and hence

$$
\left|\left(x_{1}(t)\right)^{\theta_{11}}-\left(x_{1}^{*}(t)\right)^{\theta_{11}}\right|+\left|\left(x_{2}(t)\right)^{\theta_{22}}-\left(x_{2}^{*}(t)\right)^{\theta_{22}}\right| \in L^{1}[0,+\infty) .
$$

In view of the definition of $V(t)$ and (3.19), by Barbalat's lemma [17], we have

$$
\lim _{t \rightarrow+\infty}\left(\left|\left(x_{1}(s)\right)^{\theta_{11}}-\left(x_{1}^{*}(s)\right)^{\theta_{11}}\right|+\left|\left(x_{2}(s)\right)^{\theta_{22}}-\left(x_{2}^{*}(s)\right)^{\theta_{22}}\right|\right)=0 .
$$

Hence

$$
\lim _{t \rightarrow+\infty}\left|\left(x_{1}(s)\right)^{\theta_{11}}-\left(x_{1}^{*}(s)\right)^{\theta_{11}}\right|=0, \lim _{t \rightarrow+\infty}\left|\left(x_{2}(s)\right)^{\theta_{22}}-\left(x_{2}^{*}(s)\right)^{\theta_{22}}\right|=0
$$

Further,

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \mid\left(x_{1}(s)-x_{1}^{*}(s)\left|=0, \lim _{t \rightarrow+\infty}\right|\left(x_{2}(s)-x_{2}^{*}(s) \mid=0 .\right.\right. \tag{3.20}
\end{equation*}
$$

By Lemma 2.1, we know $y_{i}(t)=\prod_{0<\tau_{k}<t}\left(1+h_{i}^{k}\right) x_{i}(t), y_{i}^{*}(t)=\prod_{0<\tau_{k}<t}\left(1+h_{i}^{k}\right) x_{i}^{*}(t), i=$
1,2 are solution of system (1.1).
By the hypotheses $\left(H_{2}\right)$ and (3.20), we obtain

$$
\lim _{t \rightarrow+\infty} \mid\left(y_{1}(s)-y_{1}^{*}(s)\left|=0, \lim _{t \rightarrow+\infty}\right|\left(y_{2}(s)-y_{2}^{*}(s) \mid=0 .\right.\right.
$$

This completes the proof of Theorem 3.5.
For system (1.3), we obtain the following results using the method of system (1.1).

Theorem 3.6. For system (1.3), we assume that $\left(H_{1}\right)-\left(H_{3}\right)$ hold and $P_{1}>$ $0, Q_{1}>0$. If t is large enough, then $K_{1} \leq y_{1}(t) \leq K_{2}, N_{1} \leq y_{2}(t) \leq N_{2}$, Where

$$
K_{1}=m_{1}\left(\frac{P_{1}}{b_{11}^{m} M_{1}}\right) \exp \left(\left(P_{1}-K_{2}\right) \tau^{*}\right), K_{2}=M_{1}\left(\frac{b_{1}^{m}}{b_{11}^{l} m_{1}}\right) \exp \left(b_{1}^{m} \tau^{*}\right)
$$

$$
N_{1}=m_{2}\left(\frac{Q_{1}}{b_{22}^{m} M_{2}}\right) \exp \left(\left(Q_{1}-N_{2}\right) \tau^{*}\right), N_{2}=M_{2}\left(\frac{b_{2}^{m}}{b_{22}^{l} m_{2}}\right) \exp \left(b_{2}^{m} \tau^{*}\right)
$$

where

$$
P_{1}=b_{1}^{l}-b_{12}^{m} N_{2}, Q_{1}=b_{2}^{l}-b_{21}^{m} K_{2}
$$

Theorem 3.7. If $\left(H_{1}\right)-\left(H_{3}\right)$ hold and satisfies $\tau_{11}=\tau_{22}=0, \overline{b_{11} p_{11}} \cdot \overline{b_{22} p_{22}}>$ $\overline{b_{12} p_{12}} \cdot \overline{b_{21} p_{21}}, \overline{b_{i}}-\overline{b_{i j} p_{i j}} \exp \left[\ln \left(\overline{\overline{b_{i i}}} \overline{\overline{b_{i i}}}\right)+2 \omega \overline{b_{i}}\right]>0, i \neq j, i=1,2, j=1,2$, $\left(b_{11} p_{11}\right)^{l}-\left(p_{21} b_{21}\right)^{m}>0$ and $\left(b_{22} p_{22}\right)^{l}-\left(p_{12} b_{12}\right)^{m}>0$.
Then system (1.3) has a positive ω-periodic solution which is globally asymptotically stable.

4. Conclusion

In this paper, we propose a periodic two species Gilpin-Ayala competition system with constant delay and impulsive perturbations. Our results indicate that under the appropriate linear periodic impulsive perturbations, the impulsive competition system with delay argument equation (1.1) remain the behave of global attractivity of nonimpulsive system (2.2). By using the method of coincidence degree and constructing suitable Lyapunov functional, we obtain sufficient conditions for existence and global asympotic stability of positive periodic solutions of system (1.1). From Theorems 3.1 to 3.7 , we can see that the time delays and pulse have effect on the permanence, existence and global asympotic stability of positive periodic solutions.

We expect a similar technique to work in higher-dimensional systems with delay and impulsive perturbations. We leave this investigation for further work.

References

1. D.Bainov, and P.Simeonor, Impulsive differential equations:periodic solutions and application, Pitman Monographs and Surrys in Pure and Applied Mathematics, 1993.
2. G.R. Jiang and Q.G Yang, Bifurcation analysis in an SIR epidemic model with birth pulse and pulse vaccination. Applied mathematics and computation, Applied mathematics and computation 215 (2009), 1035-1046.
3. G.Ballinger and X.Liu, Permanence of population growth models with impulsive effects,, Math.Comput.Model 26 (1997), 59-72.
4. J. Hou, Z.D. Teng and S.J. Gao, Permanence and global stablity for nonautonomous N species Lotka-Valterra competitive system with impulses, Nonlinear Analysis: Real world Applications. 11 (2010), 1882-1896.
5. A.Lakmeche and O.Arin, Bifurcation of non-trivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment, Dynamics of continuous, Discrete Impulsive system. 7 (2000), 265-287.
6. H.K.Beak, Qualitative analysis of Beddington-DeAngelis type impulsive predator-prey models, Nonlinear Analysis: Real world Applications. 11 (2010), 1312-1322.
7. M.G.Roberts and R.R.Kao, The dynamics of an infectious disease in a population with birth pulsed, Math.Biosci. 149 (1998), 23-36.
8. S.Y.Tany and L.S.Chen, Density-dependent birth rate, birth pulse and their population dynamic consequences, J.Math.Biol. 44 (2002), 185-199.
9. X.N.Liu and L.S. Chen,, Complex dynamics of Holling type II Lotka-Volterra predator-prey system with impulsive perturbations on the predator, Chaos, Solitons Fractals. 16 (2003), 311-320.
10. G.Balling and X.Liu, Existence,uniqueness and boundedness results for impulsive delay differential equations, J.Math.Appl.Anal. 74 (2000), 71-93.
11. J.S. Yu, Explicit conditions for stablility of nonlinear scalar delay differential equations with impulsive, Nonlinear Analysis 46 (2001), 53-67.
12. J.H.Shen, The nonoscillatory solutions of delay differential equations with impulses, Appl.Math.Comput. 77 (1996), 153-156.
13. J.Yan and A.Zhao, Oscillation and stability of linear impulsive delay differential equation, J.Math.Anal.Appl227(1998), 187-194.
14. M.E.Gilpin and F.J.Ayala, Global models of growth and competition, Proc Nat Acad Sci USA70(1973), 3590-4003.
15. M.Fan and K.Wang, Global periodic solution of a generalized n-species Gilpin-Ayala competition model, Comput.Math. Appl.40(2000), 1141-1151.
16. R.E.Gaines and J.L.Lazer, Coincidence degree and nonlinear differential equations Berlin:Springer Verlag;1977.
17. M. $X_{i} \mathrm{He}, \mathrm{Z} . \mathrm{Li}$ and F.D Chen, Permanence, extinction and global attractivity of the periodic Gilpin-Ayala competition system with impulses, Nonlinear analysis: Real world applications. 11(2010), 1537-1551.

Shuwen Zhang received his M.Sc from Northeast Normal University in 1997 and PH.D from Dalian University of Technology, in 2004. Now,He has been working in college of science at Jimei University. He is a professor at Jimei University. His resarch interest is complexity and numerical analysis for popu;ation dynamical system with impulsive perturbation.
College of Science, Jimei University, Xiamen, Fujian, 361021,P.R. China.
e-mail: anzsw_123@163.com
Dejun Tan received her M.Sc. from Liaoning Nornal University. Her resarch interest is theory and applications of fixed point.
Collegeof education of Teacher, Jimei University, Xiamen,Fujian,361021,P.R. China.
e-mail: tdj650314@163.com

[^0]: Received August 23, 2010. Revised April 4, 2011. Accepted April 15, 2011. * Corresponding author. ${ }^{\dagger}$ This work was supported by the Natural Science Foundation of Fujian Province (2008J0199). (c) 2011 Korean SIGCAM and KSCAM.

