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RELIABILITY ANALYSIS FOR THE TWO-PARAMETER

PARETO DISTRIBUTION UNDER RECORD VALUES

LIANG WANG∗, YIMIN SHI, PING CHANG

Abstract. In this paper the estimation of the parameters as well as sur-
vival and hazard functions are presented for the two-parameter Pareto
distribution by using Bayesian and non-Bayesian approaches under upper
record values. Maximum likelihood estimation (MLE) and interval esti-
mation are derived for the parameters. Bayes estimators of reliability per-
formances are obtained under symmetric (Squared error) and asymmetric
(Linex and general entropy (GE)) losses, when two parameters have dis-
crete and continuous priors, respectively. Finally, two numerical examples
with real data set and simulated data, are presented to illustrate the pro-
posed method. An algorithm is introduced to generate records data, then a
simulation study is performed and different estimates results are compared.
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1. Introduction

Let {Xn, n = 1, 2, · · · } be a sequence of independent and identically dis-
tributed (i.i.d.) random variables with a cumulative distribution function (cdf)
F (x) and probability density function (pdf) f(x). An observation Xj is called
an upper record value if its value exceeds that of all previous observations. Thus
Xj is an upper record value if Xj > Xi for each i < j. The record times sequence
{Tn, n ≥ 0} is defined in the following manner

T0 = 1 with probability 1

and for n ≥ 1,

Tn = min{j : Xj > XTn−1}.
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Furthermore, the sequence {XTn , n = 0, 1, 2, · · · } is called the sequence of upper
records of the original sequence. An analogous definition can be given for lower
record values when the sign ′ >′ is changed into ′ <′. In this paper, we only
concerned with the upper record values, and similar results can be derived for
lower record values.

Chandler [7] introduced the study of record values and documented many of
the basic properties of records, which is a special order statistic from a sample
whose size is determined by the values and the order of occurrence of observa-
tions. Record values are of interest and of importance in many real life appli-
cations, such as weather, sports, economics, life-tests, stock market and so on.
A growing interest in records has arisen in the last two decades and their prop-
erties have been extensively studied in literature. See for instance, Al-Hussaini
and Ahmed [3] and Mohamed and Mohamed [12]. For applications of the record
values see Nevzorov [13]. More details about record values can be found in, i.e.
Ahsanullah [1] and Arnold et al. [4].

For the sake of simplicity, let X = (XT1 , XT2 , . . . , XTn) = (X1, X2, . . . , Xn)
be upper record values from pdf f(x) and cdf F (x), x = (x1, x2, . . . , xn) is an
observe value of X, then the joint pdf of X, (see Ahsanullah [1], Arnold et al.
[4]), can be expressed as

f(x) = f(xn)

n−1∏

i=1

f(xi)

1− F (xi)
. (1)

Consider two-parameter Pareto distribution with cdf and pdf as follows

f(x; θ, β) = βθβx−(β+1), F (x; θ, β) = 1− θβx−β , β > 0, x ≥ θ > 0, (2)

where β and θ are unknown parameters.
The survival function R(t) and the hazard function H(t) of (2) at mission

time t are given by

R(t) = 1− F (t; θ, β) = θβt−β , H(t) =
f(t; θ, β)

1− F (t; θ, β)
= t−1β. (3)

The Pareto distribution was introduced by Pareto [14] as a model used to
describe income distributions as well as a wide variety of other socio-economic
phenomena such as insurance claims, firm assets, stock price fluctuations and
the occurrence of natural phenomena. As a useful model, however, Pareto dis-
tribution also has many applications in life test and reliability studies. There are
also several authors who discussed the Pareto distribution as a lifetime model.
For instance, Tiwari et el. [19] discussed the estimation of reliability perfor-
mances by using a fully Bayes approach wherein the range depends on one of
the parameters. Wu et al. [21] considered the weighted moments estimators of
scale parameter θ of Pareto distribution with known shape β parameter based
on multiply type-II censored sample of electronic components. Dayna et al. [8]
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discussed a goodness of fit test problem for the Pareto distribution under ob-
servations are type-II right censored data. For more details about the Pareto
distribution as a lifetime model we refer to Johnson et al. [10] and Soliman [16].

Suppose that X1 = x1, X2 = x2, . . . , Xn = xn are n observed upper record
values from the two-parameter Pareto distribution (2) with the parameters β
and θ, then by (1) the joint pdf of the records sample X = (X1, X2, . . . , Xn) is
given by

fX(x;β, θ) = βnθβx−β
n

n∏

i=1

1

xi
. (4)

The organization of this paper is as follows. Section 2 is devoted to give
some frequentist estimation for parameters β and θ, such as maximum likelihood
estimation (MLE) and interval estimation. Bayes analysis is presented in Section
3 for reliability performances under symmetric and asymmetric loss functions.
Two numerical examples and some conclusions are given in Section 4 and Section
5, respectively.

2. Frequentist estimation

In this section we consider the frequentist estimation for the Pareto parame-
ters, which include MLEs, as well as interval estimation for β and θ.

2.1. Point estimation. From (4), the log-likelihood function can be expressed
as

L(θ, β) ∝ n lnβ + β ln θ − β lnxn. (5)

Since function L(θ, β) is increasing in θ, the MLE for θ, namely θ̂M , is given
by

θ̂M = X1. (6)

Substituting the MLE of θ into (5), we can get the derivative function in β as
follows

∂

∂β
L(θ, β) =

n

β
+ lnx1 − lnxn,

then the MLE of β, namely β̂M , can be written as

β̂M = n [lnXn − lnX1]
−1

. (7)

2.2. Approximate interval estimation. From the log-likelihood function
(5), we have

∂2L(β, θ)

∂β2
= −n

β
,
∂2L(β, θ)

∂θ2
= − β

θ2
, (8)

and

∂2L(β, θ)

∂β∂θ
=

1

θ
. (9)
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The Fisher information matrix I(β, θ) is derived by taking expectations of minus

Eqs. (8) and (9). Under some mild regular conditions, (β̂M , θ̂M ) is approxi-
mately brivariately normal with mean (β, θ) and covariance matrix I−1(β, θ).

In application, we use I−1(β̂M , θ̂M ) to estimate I−1(β, θ), then the approximate
distribution of (β, θ) can be expressed as

(
β̂M , θ̂M

)
∼ N

(
(β, θ), I−1

0 (β̂M , θ̂M )
)
(β̂M ,θ̂M )

, (10)

where

I0(β̂M , θ̂M ) =

[
−∂2L(β,θ)

∂β2 −∂2L(β,θ)
∂β∂θ

−∂2L(β,θ)
∂β∂θ −∂2L(β,θ)

∂θ2

]

(β̂M ,θ̂M )

.

From the approximate distribution of (β, θ), for any 0 < α < 1, a 100(1−α)%
approximate confidence intervals for β and θ are given by
(
β̂M − Zα

2

√
V11, β̂M + Zα

2

√
V11

)
and

(
θ̂M − Zα

2

√
V22, θ̂M + Zα

2

√
V22

)
, (11)

respectively, where V11 and V22 are the elements on the main diagonal of the

covariance matrix I−1
0 (β̂M , θ̂M ) and Zα

2
is the α

2 right-tail percentile of the stan-
dard normal distribution.

Furthermore, the normal approximation for (β̂M , θ̂M ) implies that the statis-
tic

[
β̂M − βθ̂M − θ

]
I−1
0 (β̂M , θ̂M )

[
β̂M − βθ̂M − θ

]′

has an asymptotical chi-squared distribution with two degrees of freedom. Fur-
thermore, a 100(1 − α)% approximate confidence region for (β, θ) can be ex-
pressed as

{
(β, θ) :

[
β̂M − βθ̂M − θ

]
I−1
0 (β̂M , θ̂M )

[
β̂M − βθ̂M − θ

]′
≤ χ2

2(α)

}
, (12)

where χ2
a(p) is the 100p% right-tail percentile of chi-squared distribution with a

degrees of freedom.

2.3. Exact interval estimation. Denote Yi = −β(ln θ− ln Xi), it can be seen
that Yi, i = 1, 2, . . . , n, are record values from standard exponential distribution
with mean 1. Since the exponential distribution has the lack of memory property
and consequently the differences between successive records will be i.i.d. samples
from standard exponential distribution.

Denote

Z1 = Y1 = β[lnX1 − ln θ],

Z2 = Y2 − Y1 = β[lnX2 − lnX1],

· · ·
Zn = Yn − Yn−1 = β[lnXn − lnXn−1].
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It is noted that Zi, i = 1, 2, . . . , n, are independent and identical distributed as
standard exponential distribution with mean 1. Hence

κ = 2Z1 = 2β[lnX1 − ln θ]

has a chi-squared distribution with 2 degrees of freedom and

ε = 2

n∑

i=2

Zi = 2β

n∑

i=2

[lnXi − lnXi−1] = 2β[lnXn − lnX1]

has a chi-squared distribution with 2(n− 1) degrees of freedom. Furthermore, κ
and ε are independent.

Meanwhile, denote

ξ =
ε

(n− 1)κ
=

lnXn − lnX1

(n− 1)(lnX1 − ln θ)
,

and

η = κ+ ε = 2β[lnXn − ln θ].

Note that ξ has an F distribution with 2(n − 1) and 2 degrees of freedom, η
has a chi-squared distribution with 2n degrees of freedom, and that ξ and η are
independent (see Johnson et al. [10], p. 350).

Theorem 1. Suppose that X1, X2, . . . , Xn, are record values from two-parameter
Pareto distribution (2), then for any 0 < α < 1, the 100(1 − α)% confidence
intervals for β and θ are given by

(
χ2
2(n−1)(1− α

2 )

2[lnXn − lnX1]
,

χ2
2(n−1)(

α
2 )

2[lnXn − lnX1]

)
,

and
(
exp

{
lnX1 − lnXn − lnX1

(n− 1)F(2(n−1),2)(1− α
2
)

}
, exp

{
lnX1 − lnXn − lnX1

(n− 1)F(2(n−1),2)(
α
2
)

})
,

where F(2(n−1),2)(p) is the 100p% right-tail percentile of F distribution with
2(n− 1) and 2 degrees of freedom.

Proof. Since ε and ξ have a chi-squared distribution and an F distribution,
respectively, then

P
(
χ2
2(n−1)(1−

α

2
) < ε < χ2

2(n−1)(
α

2
)
)
= 1− α,

and

P
(
F(2(n−1),2)(1−

α

2
) < ξ < F(2(n−1),2)(

α

2
)
)
= 1− α.

The results can be yielded directly. ¤
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Remark. In practical, We, sometimes, need to compare if the value of parameter
is in accord with that of our past experience, this requires us to take some testing
work. Using the properties of statistics ε and ξ, we can give some hypotheses
testing here. Since function

ε(β;n) = 2β[lnXn − lnX1]

is strictly increasing in β. Thus to test the hypotheses H0 : β = β0 versus
Hα : β > β0 (or β < β0), the decision rule is to reject H0 if ε(β0;n) > χ2

2(n−1)(α)

(or ε(β0;n) < χ2
2(n−1)(1− α)), here α ∈ (0, 1) is the testing level. Similarly, the

two-side test H0 : β = β0 versus Hα : β 6= β0, the decision rule is to reject H0 if
ε(β0;n) > χ2

2(n−1)(
α
2 ) (or ε(β0;n) < χ2

2(n−1)(1− α
2 )).

For the parameter θ, since function

ξ(θ;n) =
lnXn − lnX1

(n− 1)(lnX1 − ln θ)

is strictly increasing in θ. For testing the hypotheses H0 : θ = θ0 versus Hα :
θ > θ0 (or θ < θ0), the decision rule is to reject H0 if ξ(θ0;n) > F(2(n−1),2)(α)
(or ξ(θ0;n) < F(2(n−1),2)(1− α)). For two-side test H0 : θ = θ0 versus Hα : θ 6=
θ0, the decision rule is to reject H0 if ξ(θ0;n) > F(2(n−1),2)(

α
2 ) (or ξ(θ0;n) <

F(2(n−1),2)(1− α
2 )).

Theorem 2. Suppose that X1, X2, . . . , Xn, are record values from two-parameter
Pareto distribution (2), then for any 0 < α < 1, a 100(1−α)% confidence region
for (β, θ) is determined by following inequalities:

{ exp

(
lnX1 − lnXn−lnX1

(n−1)F(2(n−1),2)(
1+

√
1−α
2

)

)
< θ < exp

(
lnX1 − lnXn−lnX1

(n−1)F(2(n−1),2)(
1−√

1−α
2

)

)
,

[
χ2
2n( 1+

√
1−α
2

)

2(lnXn−ln θ)

]
< β <

[
χ2
2n( 1−√

1−α
2

)

2(lnXn−ln θ)

]
.

Proof. Since ξ and η have an F distribution and a chi-squared distribution,
respectively, we have

P

(
F(2(n−1),2)(

1 +
√
1− α

2
) < ξ < F(2(n−1),2)(

1−√
1− α

2
)

)
=

√
1− α,

and

P

(
χ2
2n(

1 +
√
1− α

2
) < η < χ2

2n(
1−√

1− α

2
)

)
=

√
1− α.

From the independent property of ξ and η, the result can be obtained by using
usual transformation techniques. ¤

3. Bayes estimation under symmetric and asymmetric loss

This section is devoted to investigate Bayes estimation for the parameters β
and θ, as well as survival function R(t) and hazard function H(t), of the two-
parameter Pareto distribution (2) under symmetric and asymmetric losses under
record values.
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3.1. Prior information and preliminary. In recent decades, the Bayes view-
point, as a powerful and valid alternative to traditional statistical perspectives,
has received frequent attention for statistical inference. In this paper we adapt
a different method to derive the Bayes estimation under different loss functions.
To be specific, here we suppose that θ has a discrete prior and β has a continuous
conditional prior for given θ. That is to say, parameter θ follows a discrete prior
distribution

P (θ = θj) = ηj , j = 1, 2, . . . , N, (13)

where ηj , j = 1, 2, . . . , N, are positive numbers satisfying
∑N

j=1 ηj = 1.
For given θ, parameter β has a conditional conjunction prior distribution as

follows

π(β|θj) = aje
−ajβ , aj > 0, β > 0, (14)

where aj , j = 1, 2, . . . , N , are hyperparameters.
From (4) and (14), the conditional posterior distribution of β for given θ can

be expressed as

π∗(β|x, θj) =
π(β|θj)fX(x;β, θj)∫∞

0
π(β|θj)fX(x;β, θj)dβ

=
(aj +Aj)

n+1

Γ(n+ 1)
βn exp{−β(aj +Aj)}, (15)

where Aj = lnxn − ln θj , j = 1, 2, . . . , N .
Meanwhile, from (4), (13) and (14), the joint posterior pdf of (β, θ) is given

by

π∗(β, θj |x) =
P (θ = θj)π(β|θj)f(x|β, θj)∑N

j=1

∫∞
0

P (θ = θj)π(β|θj)f(x|β, θj)dβ

=
ηjajβ

ne−β(aj+Aj)

∑N
j=1 ηjajΓ(n+ 1)/[aj +Aj ]n+1

.

Furthermore, the marginal posterior distribution of θj can be written as

Pj = P (θ = θj |x) =
∫ ∞

0

π∗(β, θj |x)dβ

=
ηjaj [aj +Aj ]

−(n+1)

∑N
j=1 ηjaj [aj +Aj ]−(n+1)

. (16)

3.2. Bayes estimation under symmetric loss. In this subsection we con-
sider the Bayes estimation for the reliability performances under square error loss
function, which is one of very popular symmetric loss. The choice of squared
error loss as loss function has twofold advantage of easy of computation and of
leading to estimators that can be obtained directly. Since the Bayes estimation
under squared error loss is to be the posterior expectation, using (15) and (16),
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the Bayes estimators for β, θ, as well as R(t) and H(t) at mission time t, namely

β̂BS , θ̂BS , R̂BS(t), and ĤBS(t), are given by

β̂BS =
∫∞
0

∑N
j=1 β Pjπ

∗(β|θj , x)dβ =
∑N

j=1
Pj(n+1)
aj+Aj

,

θ̂BS =
∑N

j=1 Pjθj ,

R̂BS =
∫∞
0

∑N
j=1 R(t)Pjπ

∗(β|θj , x)dβ =
∑N

j=1
Pj(a+Aj)

n+1

(aj+Aj+ln t−ln θj)n+1 ,

ĤBS =
∫∞
0

∑N
j=1 H(t)Pjπ

∗(β|θj , x)dβ =
∑N

j=1
Pj(n+1)
t(aj+Aj)

.

(17)

3.3. Bayes estimation under asymmetric loss. In statistical decision the-
ory and Bayes analysis, the squared error loss function, as one of very popular
symmetric loss, is widely used due to its great analysis property such as easy
calculation. Under squared error loss, it is to be thought that squared error
loss penalizes same importance to overestimation and underestimation. In some
practical estimation and prediction problems, however, the overestimation and
underestimation have different estimated risks. Thus using symmetric loss func-
tion may be inappropriate, and an asymmetric Linear-exponential (Linex) loss
function has been introduced by Varian [20], and further illustrated by Zellner
[22]. Several studies have been discussed on the use of the Linex loss. For
instance, Akdeniz [2] generalized Liu estimator and obtained a new biased esti-
mator when Linex loss is used. Hoque et al. [9] studied the performance of the
unrestricted estimator and preliminary test estimator of the slope parameter of
simple Linear regression model under Linex loss. The Linex loss function is in
the performance of approximately linearly on one side of zero and approximately
exponentially on the other side, which is defined as follows

L(δ, φ(θ)) = ec(δ−φ(θ)) − c(δ − φ(θ))− 1, c 6= 0, (18)

where δ is an estimator of φ(θ).
From (18), it is seen that, when c > 0, overestimation is more serious than

underestimation; When c < 0, the conclusion is opposite. As c nears to zero,
the Linex loss function is approximately the squared error loss, and therefore
almost symmetric. A review of Linex loss and its properties are investigated by
Parsian and Kirmani [15]. The Bayes estimator under Linex loss is given by

φ̂BL = −1

c
ln[Eφ(e

−cφ(θ))], (19)

provided that the expectation Eφ(e
−cφ(θ)) exists and is finite, where Eφ(·) de-

notes posterior expectation with respect to the posterior density of φ(θ).
Using (15), (16) and (19), the Bayes estimators for β, θ, as well as R(t) and

H(t) at mission time t, namely β̂BL, θ̂BL, R̂BL(t), and ĤBS(t), under Linex loss



Reliability Analysis for the Two-Parameter Pareto Distribution under Record Values 1443

can be written as

β̂BL = − 1
c ln

[∫∞
0

∑n
j=1 Pje

−cβπ∗(β|θj , x)dβ
]

= − 1
c ln

[∑N
j=1

Pj(aj+Aj)
n+1

(aj+c+Aj)n+1

]
,

θ̂BL = − 1
c ln

[∑N
j=1 Pje

−cθj
]
,

R̂BL(t) = − 1
c ln

[∑N
j=1

∑∞
k=0

Pj

k!
[−c]k(aj+Aj)

n+1

(aj+Aj+k ln t−k ln θj)n+1

]
,

ĤBL(t) = − 1
c ln

[∑N
j=1

Pj(aj+Aj)
n+1

(aj+Aj+c/t)n+1

]
.

(20)

Another useful asymmetric loss function is the General Entropy (GE) loss,
which is defined as follows

L(δ, φ(θ)) ∝
(

δ

φ(θ)

)q

− q ln

(
δ

φ(θ)

)
− 1.

When q > 0, the positive error (δ > φ(θ)) causes more serious consequences than
that caused by a negative error, and vice versa. When q = 1, the GE reduces
to the conventional entropy loss function. The Bayes estimator under GE loss
is given by

φ̂BG =
(
Eφ[φ(θ)

−q]
)−1/q

, (21)

provided that Eφ[φ(θ)
−q] exists and is finite.

Using (15), (16) and (21), the Bayes estimators for β, θ, as well as R(t) and

H(t) at mission time t, namely β̂BG, θ̂BG, R̂BG(t), and ĤBG(t), under GE loss
can be expressed as

β̂BG =
[∫∞

0

∑N
j=1 Pjβ

−qπ∗(β|θj , x)dβ
]−1/q

=
[∑N

j=1
Γ(n+1−q)
Γ(n+1) Pj(aj +Aj)

q
]−1/q

,

θ̂BG =
[∑N

j=1 Pjθ
−q
j

]−1/q

,

R̂BG(t) =
[∑N

j=1
Pj(aj+Aj)

n+1

(aj+Aj+q ln θj−q ln t)n+1

]−1/q

,

ĤBG(t) =
[∑N

j=1
Γ(n+1−q)
Γ(n+1) Pjt

q(aj +Aj)
q
]−1/q

.

(22)

where n+ 1− q > 0 for the existence of Bayes estimators.

3.4. The choice of hyperparameters. Sometimes it is not always possible
to know the exact value of the hyper-parameters aj in prior, the estimation
problem is considered for the unknown hyperparameters aj , j = 1, 2, . . . , N in
this subsection

In the classic maximum likelihood estimation method, the MLEs of β, θ are
the values for which the likelihood function is largest over all possibilities. This
method is used for the maximum points of density. In the view of the Bayes ap-
proach, it is an effective measure to estimate the unknown parameter by making
use of expectation and MLE, which could utilize the prior information properly.
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Here we adopt a similar way to derive the estimators of the hyperparameters as
Soliman [17, 18] by using expectation and MLE.

Recall (6) and (7), the MLEs of R(t) and H(t) at mission time t are given by

R̂(t) = θ̂β̂M

M t−β̂M , Ĥ(t) = β̂M/t.

Meanwhile, the expectation of R(t) can be expressed as

ER(t) =

∫ ∞

0

R(t)π(β|θj)dβ =
aj

aj + ln t− ln θj
.

For a given mission time t, let ER(t) = R̂(t), the estimators of aj , namely âj ,
can be written as

âj =
R̂(t)

1− R̂(t)
[ln t− ln θj ] , j = 1, 2, . . . , N.

Another useful alternative method to estimate the hyperparameters aj , j =
1, 2, . . . , N , is the maximum likelihood type II estimation, or simply ML-II
method (see Berger, [6], p. 99).

Let Ti = lnXi − ln θ, then Ti, i = 1, 2, . . . , n, are the upper record values
from the exponential distribution with conditional density function fT (t;β) =
β exp{−βt}, t > 0. Furthermore, for given θj , the marginal density function, as
well as cdf of Ti, are give by

fT (t) =

∫ ∞

0

π(β|θj)fT (t;β)dβ =
aj

(t+ aj)2
, t > 0,

and

FT (t) =

∫ t

0

fT (x)dx = 1− aj
t+ aj

, t > 0.

From (1), the joint pdf of (T1, T2, . . . , Tn) can be expressed as

f(t; aj) = fT (tn)

n−1∏

i=1

fT (ti)

1− FT (ti)
=

aj
tn + aj

n∏

i=1

1

ti + aj

=
aj

aj + lnxn − ln θj

n∏

i=1

1

aj + lnxi − ln θj
.

Furthermore, the log-likelihood function can be written as

L(aj ;x) = ln f(t; aj)

= ln aj − ln(aj + lnxn − ln θj)−
n∑

i=1

ln(aj + lnxi − ln θj),

taking derivative for L(aj ;x) with respect to aj , then

∂

∂aj
L(aj ;x) =

1

aj
− 1

aj + lnxn − ln θj
−

n∑

i=1

1

aj + lnxi − ln θj
.
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As the ML-II estimator of aj is needed, we just need to draw a conclusion

that the equation ∂
∂aj

L(aj ;x) = 0 has only one root with respect to aj for all

j = 1, 2, . . . , N .
Denote

g1(aj) =
1

aj
− 1

aj + lnxn − ln θj
, g2(aj) =

n∑

i=1

1

aj + lnxi − ln θj
.

Since

lim
aj→0

g1(aj) = +∞, lim
aj→+∞

g1(aj) = 0,

∂

∂aj
g1(aj) = − 1

a2j
+

1

(aj + lnxn − ln θj)2
< 0,

∂2

∂a2j
g1(aj) =

2

a3j
− 2

(aj + lnxn − ln θj)3
> 0,

and

lim
aj→0

g2(aj) =

n∑

i=1

1

lnxi − ln θj
, lim

aj→+∞
g2(aj) = 0,

∂

∂aj
g2(aj) = −

n∑

i=1

1

(aj + lnxi − ln θj)2
< 0,

∂2

∂a2j
g2(aj) =

n∑

i=1

2

(aj + lnxi − ln θj)3
> 0.

It is noted that both functions of g1(aj) and g2(aj) are strictly monotone de-
creasing concave functions.

Furthermore, since

lim
aj→∞

g2(aj)

g1(aj)
=

n∑

i=1

lim
aj→∞

1

aj + lnxi − ln θj

aj(aj + lnxn − ln θj)

lnxn − ln θj

=

n∑

i=1

lim
aj→∞

2aj + lnxn − ln θj
lnxn − ln θj

= ∞,

then the equation ∂
∂aj

L(aj ;x) = 0 has only one root, which implies the ML-II

estimator of aj is unique. Since there is no closed solution for aj , the estimator
of aj , say âj , can be derived using following iterative formula

1

a
(k+1)
j

=
1

a
(k)
j + lnxn − ln θj

+

n∑

i=1

1

a
(k)
j + lnxi − ln θj

, k = 0, 1, 2, · · ·

for all j = 1, 2, . . . , N , where a
(k)
j is the kth iterative value, and a

(0)
j is an initial

value.
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4. Numerical examples

In this section, two examples are given to illustrate the results provided in
previous sections. We apply the proposed methods to one of practical data set
and another simulated data set. Further, a Monte Carlo simulation is conducted
to compare the simulation results.
Example 1. (Real-life data) The following upper record values which rep-
resent the values of the average July temperatures (in degrees centigrade) of
Neuenburg, Switzerland, during the period 1864-1993 (from Kluppelberg and
Schwere [11]).

19.0 20.1 21.4 21.7 22.0 22.1 22.6 23.4

Arnold and Press [5] have showed that the Pareto distribution is a reasonable
model for this data set.

From (6) and (7), the MLEs for the parameters θ and β are given by θ̂M = 19.0

and β̂M = 38.4067, respectively.
Using following percentiles

χ2
14(0.95) = 6.5706, χ2

14(0.05) = 23.6848,

F(14,2)(0.95) = 0.2675, F(14,2)(0.05) = 19.4244.

By Theorem 1, the 90% confidence intervals for β and θ are (15.7720,56.8526)
and (16.9998,18.9709), respectively.

Furthermore, using the percentiles as follows

χ2
16(0.9743) = 6.9454, χ2

16(0.0257) = 28.7469,

F(14,2)(0.9743) = 0.2079, F(14,2)(0.0257) = 38.3370.

By Theorem 2, the 90% confidence region for (β, θ) is determined from the
following inequalities:

{
16.4662 < θ < 18.9853,[

3.4727
3.1527−ln θ

]
< β <

[
19.1685

3.1527−ln θ

]
.

From above description of the confidence region, one can clearly find that the
confidence region is large when θ is large.
Example 2. (Simulated data) In order to give a simulation study, here we
provide an algorithm to generate a group of record values as following steps:

Step 1. Generating a group of i.i.d. samples, namely Z1, Z2, . . . , Zn, from
uniform distribution with density function f(z) = 1, 0 < z < 1 and f(z) = 0
otherwise.

Step 2. Making transformation Yi = − ln(1−Zi), then Yi, i = 1, 2, . . . , n, are
the i.i.d. samples from standard exponential distribution Exp(1) with density
function f(y) = 1− e−y, 0 < y < ∞.

Step 3. Let Wi = Y1+Y2+ . . .+Yi, since the exponential distribution has he
lack of memory property, the sequences Wi, i = 1, 2, . . . , n, are the record values
from standard exponential distribution.
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Step 4. Denote Ui = 1 − e−Wi , then sequence Ui, i = 1, 2, . . . , n, are the
record values from uniform distribution with density f(u) = 1, 0 < u < 1 and
f(u) = 0 otherwise.

Step 5. For arbitrary cdf F (x), making transformation Xi = F−1(Ui), se-
quenceXi, i = 1, 2, . . . , n, are record values sequence with cdf F (x), where F−1(·)
is the inverse function of F (·).

Using the algorithm described above, for given β = 0.9, θ = 1.6, n = 5,
the following record values data of the two-parameter Pareto distribution are
simulated:

2.435 6.850 7.965 8.086 24.583

Using following percentiles

χ2
8(0.95) = 2.7326, χ2

8(0.05) = 15.5073,

F(8,2)(0.95) = 0.2243, F(8,2)(0.05) = 19.3710.

By Theorem 1, the 90% confidence intervals for β and θ are (0.5912,3.3530) and
(0.1844,2.3634), respectively.

Meanwhile, using the percentiles as follows

χ2
10(0.9743) = 3.2713, χ2

10(0.0257) = 20.3986,

F(8,2)(0.9743) = 0.1669, F(8,2)(0.0257) = 38.2835.

By Theorem 2, the 90% confidence region for (β, θ) is determined from the
following inequalities:

{
0.0764 < θ < 2.3985,[

1.6356
3.2021−ln θ

]
< β <

[
10.1993

3.2021−ln θ

]
.

Fig. 1 shows the 90% confidence region for (β, θ). It is clear to find that the
region is large when θ is large.

0

0.5

1.5

2.5

3.5

4.5

0 0.5 1 1.5 2 2.5θ

β

Fig. 1. A 90% confidence region for (β, θ).

True value
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In order to examine how well the proposed approach works for constructing
confidence intervals and regions, we will make 5000 times simulation for the es-
timation of the exact and approximate (Appro) confidence intervals and regions
in terms of convergence probabilities. The simulation results are summarized in
Table 1.

Table 1. Coverage probabilities of interval and region estimates
when (β, θ) = (0.9, 1.6).

n
β θ (β, θ)

Exact Appro Exact Appro Exact Appro
3 0.865 0.797 0.861 0.799 0.919 0.751
5 0.903 0.856 0.905 0.873 0.914 0.899
7 0.896 0.820 0.910 0.865 0.926 0.857
9 0.914 0.868 0.907 0.869 0.918 0.873

Using the simulated data and given θj , ηj with N = 10, t = 3, Table 2 sum-
marized the values of âj , Aj , Pj , j = 1, 2, . . . , N . The Bayes estimates, as well as
MLEs, for the parameter β, θ, survival function R(t) and hazard function H(t)
are computed from (17), (20) and (22), and the calculated results are listed in
Table 3.

Table 2. Prior information and posterior probabilities (n = 5, t = 3)

j 1 2 3 4 5 6 7 8 9 10

θj 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
ηj 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
âj 1.003 0.916 0.836 0.762 0.693 0.628 0.568 0.511 0.457 0.405
Aj 3.106 3.020 2.940 2.865 2.796 2.732 2.671 2.614 2.560 2.509
Pj 0.049 0.058 0.067 0.079 0.091 0.103 0.117 0.130 0.144 0.157

Note: here the hyperparameters are estimated by using the first method.

Table 3. Bayes estimates for reliability index (n=5, t=3)

Loss and index β̂ θ̂ R̂(t) Ĥ(t)
MLE 0.872 2.434 0.833 0.291

Squared loss 1.775 1.580 0.360 0.592

Linex loss
c=2 1.572 2.043 0.351 0.549
c=-1 1.622 1.719 0.638 0.626

GE loss
q=1 1.752 1.520 0.732 0.387
q=-2 1.371 1.607 0.469 0.358

In order to illustrate the accuracy of the different estimators, repeating 1000
simulations as above, the estimated risk (ER) are computed as the average of



Reliability Analysis for the Two-Parameter Pareto Distribution under Record Values 1449

their squared deviations. The expression is

1

1000

1000∑

i=1

(φ̂− φ)2,

where φ and φ̂ denote the original value and Bayes estimates of β, θ,R(t) and
H(t), respectively. The estimated risk of Bayes estimates under different loss
are listed in Table 4.

Table 4. The estimated risk of Bayes estimates under different loss(t=3,c=2,q=1)

MLE
β θ R(t) H(t)

Sample size
n=3 0.675 0.924 0.575 0.583
n=5 0.383 0.673 0.351 0.321
n=7 0.272 0.218 0.124 0.127

Squared Loss
β θ R(t) H(t)

Sample size
n=3 0.975 0.515 0.657 0.521
n=5 0.813 0.248 0.339 0.275
n=7 0.481 0.096 0.103 0.096

Linex Loss
β θ R(t) H(t)

Sample size
n=3 0.576 0.617 0.528 0.496
n=5 0.457 0.423 0.201 0.219
n=7 0.101 0.099 0.084 0.085

GE Loss
β θ R(t) H(t)

Sample size
n=3 0.876 0.478 0.343 0.618
n=5 0.699 0.123 0.208 0.397
n=7 0.211 0.078 0.101 0.142

5. Conclusions

In this paper the estimation problem are considered for the parameters as
well as the reliability and hazard functions of the Pareto model based on records
by using Bayes and non-Bayes procedures. There are some conclusions which
have been noticed as follows

1: Excepting for being used to analysis social and economical phenomenon,
the two-parameter Pareto distribution has received more and more at-
tentions for its application in reliability theory, quality control duration
and failure time modeling, as well as other related fields.
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2: The record values is thought of as a special topic in order statistics,
which has been developed widely in applications such as reliability the-
ory, meteorology, sports analysis, hydrology, and stock market analysis.

3: From Table 1, it is noted that, under different sample size, the coverage
probabilities of the exact confidence intervals for β and θ, as well as
the exact confidence region for (β, θ) are all close to the desired level
of 0.90. Comparing with the coverage probabilities of the approximate
estimates, the exact confidence intervals and regions are better than the
asymptotic ones.

4: From Table 3 and Table 4, It will be observed that the Bayes estimates
are superior to MLEs for the parameters β, θ, as well as survival function
R(t) and hazard function H(t), respectively. The results show that the
asymmetric Bayes estimates (under Linex and GE losses) are general
better than MLEs, which makes them more attractive for using in prac-
tical problem. Meanwhile, the estimated risks of the Bayes estimators
get smaller under both symmetric and asymmetric losses with increasing
sample size.

5: It may be remarked that there are two methods mentioned in this pa-
per to estimate the hyperparameters. Since the first one depends on the
value of MLEs of the parameters, which, however, sometimes cannot pro-
vide a good enough estimates, hence the authors tend to recommend the
second method, in which the discrete prior information are also utilized
there.
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