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SSOR-LIKE METHOD FOR AUGMENTED SYSTEM†

MAO-LIN LIANG∗, LI-FANG DAI AND SAN-FU WANG

Abstract. This paper proposes a new generalized iterative method (SSOR-
like method) for solving augmented system. A functional equation relating
two involved parameters is obtained, and some convergence conditions for
this method are derived. This paper generalizes some foregone results. Nu-
merical examples show that, this method is efficient by suitable choices of
the involved parameters.
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1. Introduction

Let A ∈ Rm×m be a symmetric and positive definite matrix, B ∈ Rm×n be
a full column rank matrix, obviously m ≥ n. Then the augmented system is of
the form(

A B
−BT 0

)(
x
y

)
=

(
p
−q

)
, (1.1)

where BT stands for the transpose of matrix B, and p ∈ Rm, q ∈ Rn. In these
cases, the system (1.1) has unique solution.

The augmented system arises in a wide variety of scientific and engineering
applications, such as computational fluid dynamics [1], optimization and control
[2], linear elasticity and mixed finite element method of elliptic partial differential
equations [3], or the generalized least squares problems [4], electronic networks
and others. The system of (1.1) is also termed as a Karush-Kuhn-Tucker (KKT)
system, or an equilibrium system, or a saddle point problem [5,6,7].

The matrices A and B are frequently large and sparse. Hence, the iterative
methods are more efficient because of storage requirements and preservation
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sparsity than direct method. Recently, Golub et al. [8] presented SOR-like al-
gorithm, based on well-known SOR method, to solve the augment system (1.1).
Bai el al. presented generalized SOR-like method in [9], which includes the clas-
sical Uzawa method [10] and the preconditioned Uzawa method [11]. Motivated
by Bai [9] and SOR method, Wu el al. [12] gave out modified symmetric SOR
(MSSOR) method. The authors derived associated convergence under suitable
restrictions on the iteration parameter, optimal iteration parameter, and cor-
responding optimal convergence factor under certain conditions. More related
works can be found in [13,14,15,16] and references therein.

In this paper, we propose a new generalized iterative method (i.e., SSOR-like
method), under another splitting of the coefficient matrix of the system (1.1).
An equation relating the parameters and the eigenvalues of the iteration matrix
is obtained. And some convergence conditions for this method are also studied.
This paper extends some results such as that in [12]. We should point out that
the SSOR-like method is different from GSSOR method [17].

The remainder of this paper is organized as follows. In section 2, An new
iterative algorithm will be given to solving the augmented system (1.1). In sec-
tion 3, we will obtain the equation relating the parameters and eigenvalues of
the iteration matrix, and the the convergence conditions. In section 4, some
numerical examples are used to examine the feasibility and effectiveness of the
SSOR-like method.

2. The SSOR-like method

We first recall the SOR-like method for the augmented system (1.1) in [8].
Make the splitting of the coefficient matrix as follows:(

A B
−BT 0

)
=

(
A 0
0 Q

)
−
(

0 0
BT 0

)
−
(

0 −B
0 Q

)

:= D − L− U , (2.1)

where Q is symmetric positive definite and the preconditioning matrix. Then
the SOR-like method is defined by

(D − ωL)

(
x(k+1)

y(k+1)

)
= [(1− ω)D + ωU)]

(
x(k)

y(k)

)
+ ω

(
p
−q

)
,

where ω ia a real parameters.
In order to derive our new iterative method, make the splitting:(

A B
−BT 0

)
= D − L− U , (2.2)

where

D =

(
A 0
0 Q

)
, L =

(
0 0
BT αQ

)
, U =

(
0 −B
0 βQ

)
,

Q is symmetric positive definite matrix, and α, β are real parameters which sat-
isfy that α+ β = 1. In the following text, we always see D, L and U as in (2.2).
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Obviously, if α = 0 meaning β = 1, the splitting (2.2) becomes (2.1). Moti-
vated by the classical and efficient symmetric successive over-relaxation iterative
(SSOR) method, we define the following iteration procedures

(
x(k+ 1

2 )

y(k+
1
2 )

)
= Lω,α

(
x(k)

y(k)

)
+ ω(D − ωL)−1

(
p
−q

)
, (2.3)

(
x(k+1)

y(k+1)

)
= Uω,α

(
x(k+ 1

2 )

y(k+
1
2 )

)
+ ω(D − ωU)−1

(
p
−q

)
, (2.4)

where Lω,α = (D − ωL)−1[(1− ω)D + ωU)]

=

(
(1− ω)Im −ωA−1B

ω(1−ω)
1−ωα Q−1BT In − ω2

1−ωαQ
−1BTA−1B

)

and Uω,α = (D − ωU)−1[(1− ω)D + ωL)]

=

(
(1− ω)Im − ω2

1−ωβA
−1BQ−1BT −ωA−1B

ω
1−ωβQ

−1BT In

)
.

Combining (2.3) with (2.4), then we get the SSOR-like method:
(

x(k+1)

y(k+1

)
= Tω,α

(
x(k)

y(k)

)
+ C (2.5)

with
Tω,α = Uω,αLω,α

=


 (1− ω)2Im − ω2(1−ω)(2−ω)

(1−ωα)(1−ωβ)A
−1BQ−1BT

ω(1−ω)(2−ω)
(1−ωα)(1−ωβ)Q

−1BT

ω3(2−ω)
(1−ω)(1−β)A

−1BQ−1BTA−1B − ω(2− ω)A−1B

In − ω2(2−ω)
(1−ωα)(1−ωβ)Q

−1BTA−1B


 (2.6)

and

C = ωUω,α(D − ωL)−1

(
p
−q

)
+ ω(D − ωU)−1

(
p
−q

)

= ω(2− ω)




A−1p− ω2

(1−ωα)(1−ωβ)A
−1BQ−1BTA−1p

+ ω
(1−ωα)(1−ωβ)A

−1BQ−1q

ω
(1−ωα)(1−ωβ)Q

−1BTA−1p− 1
(1−ωα)(1−ωβ)Q

−1q


.

Furthermore, the SSOR-like method can be rewritten concretely as follows:

y(k+1) = y(k) + ω(2−ω)
(1−ωα)(1−ωβ)Q

−1BT [(1− ω)x(k) − ωA−1By(k) + ωA−1p]

− ω(2−ω)
(1−ωα)(1−ωβ)Q

−1q,

x(k+1) = (1− ω)2x(k) − ωA−1B[y(k+1) + (1− ω)y(k)] + ω(2− ω)A−1p.

where Q is an approximate (preconditioning) matrix of the Schur complement
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of matrix BTA−1B.

The SSOR-like method includes two parameters ω, α, one preconditioning
matrix Q, which is different from the GSSOR method in [17]. Particularly, if let
α = β = 1

2 , the SSOR-like method becomes the MSSOR method [12]. Therefore,
the method proposed in present paper is the generalization of that in [12].

In the sequel, we will analysis the convergence of SSOR-like method for solv-
ing the augmented system (1.1). From (2.2) we have

(D − ωL) =

(
A 0

−ωBT (1− ωα)Q

)
, (D − ωU) =

(
A ωB
0 (1− ωβ)Q

)
,

it follows that

det(D − ωL) = (1− ωα)n det(A) · det(Q) 6= 0,

det(D − ωU) = (1− ωβ)n det(A) · detdet(Q) 6= 0

if and only if 1− ωα 6= 0 and 1− ωβ 6= 0. (2.7)

Where the symbol det(·) denotes the determinant of matrix. So the hypothesis
of (2.7) is necessary for the iterative method.

As is well known, the SSOR-like method (2.5) is convergent if and only if
the spectral radius of its iteration matrix ρ(Tω,α) < 1. Naturally, ω 6= 0 from
(2.6). For the need of convergence analysis, let λ be an eigenvalue of the iterative
matrix Tω,α and (xT , yT )T be the corresponding eigenvector, that is,

Tω,α

(
x
y

)
= λ

(
x
y

)
.

Noting that (2.7) and substituting (2.6) into the above equation, by simply
computation, we obtain

{
[(1− ω)2 − λ]x = ω(1− ω + λ)A−1By,

ω(1−ω)(2−ω)
(1−ωα)(1−ωβ)Q

−1BTx = ω2(2−ω)
(1−ωα)(1−ωβ)Q

−1BTA−1By − (1− λ)y.
(2.8)

Remark 2.1. It is clear that the eigenvalues of Tω,α will not equal to 1, and
ω 6= 2. Otherwise, it will be contradict to the definition of eigenvector.

The next lemma further describes the properties of Tω,α.

Lemma 2.1. Suppose that λ 6= ω − 1, and α, β satisfy (2.7). Then
(1) λ = (1 − ω)2 is an eigenvalue of Tω,α with at least multiplicity of m while
ω = 1.
(2) if ω 6= 1, λ = (1 − ω)2 is an eigenvalue of which with multiplicity not less
than m− n, if and only if m > n.
Proof. Provided that λ = (1− ω)2 is an eigenvalue of Tω,α, which follows from
(2.8) that{

(1− ω + λ)A−1By = 0,
1−ω

(1−ωα)(1−ωβ)Q
−1BTx = ω

(1−ωα)(1−ωβ)Q
−1BTA−1By − y.

(2.9)
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Since λ 6= ω− 1, and B is full column rank, we obtain from (2.9) that y = 0 and
(1− ω)BTx = 0. Furthermore, if ω = 1 we know that (1− ω)BTx = 0 holds for
any x ∈ Rm. That is to say that λ = (1− ω)2 is an eigenvalue with multiplicity
not less than m. Otherwise, if ω 6= 1 and m > n, it means that λ = (1− ω)2 is
an eigenvalue with at least multiplicity m− n. Whereas λ = (1− ω)2 is not one
when m = n. The proof is completed. ¤

Based on Lemma 2.1, we have the following theorem. It gives out an equation
including several parameters and being essential for studying the convergence of
the SSOR-like method (2.5).

Theorem 2.1. Let A ∈ Rm×m, Q ∈ Rn×n be symmetric positive definite,
B ∈ Rm×n be of full column rank, with m ≥ n. If λ (6= (1 − ω)2) is a nonzero
eigenvalue of the iterative matrix Tω,α in (2.5), and µ satisfies

(1− ωα)(1− ωβ)(1− λ)(λ− (1− ω)2) = µλω2(2− ω)2, (2.10)
then µ is an eigenvalue of matrix Q−1BTA−1B.Conversely, If µ is an eigenvalue
of Q−1BTA−1B and λ satisfies (2.10), then λ is an eigenvalue of Tω,α.

Proof. Let λ (6= (1 − ω)2) and (xT , yT )T be the eigenvalue and corresponding
eigenvector of Tω,α, respectively, then they content (2.8). So we obtain from

the first equation of (2.8) that x = ω(1−ω+λ)
(1−ω)2−λA

−1By. Taking it into the second

equation yields

λω2(2− ω)2

(1− ωα)(1− ωβ)(λ− (1− ω)2)
Q−1BTA−1By = (1− λ)y.

The above equation and (2.10) imply that µ is an eigenvalue of matrix
Q−1BTA−1B. In fact, the eigenvalue µ can be positive real number for the
particularity of the matrices Q, A and B. The second assertion can be proved
by reversing the above process. We complete the proof. ¤

From Theorem 2.1, we can see that if α = β = 1
2 , the equation (2.10) becomes

(5) of Theorem 2 proposed in [12].

3. The convergence analysis of iterative method (2.5)

In this section we analysis the convergence of the SSOR-like method of (2.5).
The convergence conditions will be derived. Meanwhile, the optimal parameter
and factor will also be considered.

Lemma 3.1 ([18]). Consider the quadratic equation x2 − bx + c = 0, where b
and c are real numbers. Booth roots of the quadratic equation are less than one
in modulus if and only if |c| < 1 and |b| < 1 + c.

By making use of Lemma 3.1, we can obtain the convergence conditions of
the SSOR-like method, which are expressed as follows:

Theorem 3.1. Let A ∈ Rm×m, Q ∈ Rn×n be symmetric positive definite, B ∈
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Rm×n be of full column rank, with m ≥ n. Then the SSOR-like method of (2.5)
is convergent if and only if

0 < ω < 2, (1− ωα)(1− ωβ) > 0, and ρω2(2−ω)2

(1−ωα)(1−ωβ) < 2 + 2(1− ω)2, (3.1)

where ρ denotes the spectral radius of the matrix Q−1BTA−1B.

Proof. The equation (2.10) can be rewritten equivalently as

λ2 − [(1− ω)2 + 1− µω2(2−ω)2

(1−ωα)(1−ωβ) ]λ+ (1− ω)2 = 0. (3.2)

For the convenience of statement, set

b = (1− ω)2 + 1− µω2(2− ω)2

(1− ωα)(1− ωβ)

and
c = (1− ω)2.

Then using Lemma 3.1 we obtain that |λ| < 1 if and only if

|(1− ω)2| < 1,

and

|(1− ω)2 + 1− µω2(2− ω)2

(1− ωα)(1− ωβ)
| < 1 + (1− ω)2.

Equivalently,
0 < ω < 2,

and

0 < µω2(2−ω)2

(1−ωα)(1−ωβ) < 2 + 2(1− ω)2. (3.3)

Because of the particularity of matrices Q,A and B, we can claim that µ > 0.
Then resorting to (3.3) shows that the last two terms of (3.1) are true. ¤

From Theorem 3.1, we can obtain the necessary conditions of convergence for
the SSOR-like method.

Corollary 1. Suppose (1 − ωα)(1 − ωβ) > 0, let the eigenvalues µ of matrix
Q−1BTA−1B are real and positive, then we have

(1) If 0 < µ ≤ 1
4 , the SSOR-like method (2.5) is convergent, then 0 < ω < 2.

(2) If µ = 1
2 , the method is convergent, then all 0 < ω < 1.

(3) If µ > 1
4 but µ 6= 1

2 , it is convergent, then

0 < ω < 2
1+

√
4ρ−1

< 2,

where ρ denotes the spectral radius of Q−1BTA−1B.

Proof. Noting that the hypothesis α+β = 1, and (1−ωα)(1−ωβ) ≤ (2−ω)2

4 for

some given ω, the equality is attainable when α = β = 1
2 , it follows from (3.3)

that (1− 2µ)ω2 − 2ω+2 > 0. The following discussion is similar to the proof of
Theorem 1 in [12]. ¤
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We should point out that the above necessary conditions will be sufficient if
α = β = 1

2 .

4. The optimal relaxation factor of SSOR-like method

Let ρ = ρ(Q−1BTA−1B) and 0 < µ0 = minµ6=u, where µ is a positive eigen-
value of the matrix product Q−1BTA−1B.

Theorem 4.1. Provided that α, β satisfies (2.7), α + β = 1 and 0 < ω < 2.
Then

Case I. If 0 < αβ − µ < 1
4 , 0 < α, β < 1, 0 < µ < αβ < 1

4 , we have

ρ(Tω,α) =





|1− ω|, if 2

1+
√

1−4(αβ−ρ)
≤ ω ≤ 2(1−4ρ)

(1−4ρ)+
√

(1−4ρ)(1−4αβ)
< 2,

0.5
{
|(1− ω)2 + 1− ρω2(2−ω)2

(1−ωα)(1−ωβ)

+ω(2− ω)

√
[1− ρω2

(1−ωα)(1−ωβ)
][1− ρ(2−ω)2

(1−ωα)(1−ωβ)
]

}
,

if 0 < ω ≤ 2

1+
√

1−4(αβ−ρ)
or

2(1−4ρ)

(1−4ρ)+
√

(1−4ρ)(1−4αβ)
≤ ω < 2.

(4.1)

In this case, the optimal parameter ωopt and ρ(Tωopt,α) are given respectively by

ωopt =
2

1+
√

1−4(αβ−ρ)
and ρ(Tωopt,α) =

1−
√

1−4(αβ−ρ)

1+
√

1−4(αβ−ρ)
.

Case II. (1) If αβ < µ < 1
4 , we have

ρ(Tω,α) =





|1− ω|, if
2(1−4ρ)

(1−4ρ)+
√

(1−4ρ)(1−4αβ)
≤ ω ≤ 2

1+
√

1−4(αβ−ρ)
< 1,

0.5
{
|(1− ω)2 + 1− ρω2(2−ω)2

(1−ωα)(1−ωβ)
|

+ω(2− ω)

√
[1− ρω2

(1−ωα)(1−ωβ)
][1− ρ(2−ω)2

(1−ωα)(1−ωβ)
]

}
,

if 0 < ω ≤ 2(1−4ρ)

(1−4ρ)+
√

(1−4ρ)(1−4αβ)
or 2

1+
√

1−4(αβ−ρ)
≤ ω < 2,

(4.2)

and the optimal parameter ωopt and ρ(Tωopt,α) are

ωopt =
2(1−4ρ)

(1−4ρ)+
√

(1−4ρ)(1−4αβ)
and ρ(Tωopt,α) = 1− 2(1−4ρ)

(1−4ρ)+
√

(1−4ρ)(1−4αβ)
.

(2) If αβ < 1
4 < µ, we have

ρ(Tω,α) =





|1− ω|, if 0 < ω ≤ 2

1+
√

1−4(αβ−ρ)
< 1,

0.5
{
|(1− ω)2 + 1− ρω2(2−ω)2

(1−ωα)(1−ωβ)
|

+ω(2− ω)

√
[1− ρω2

(1−ωα)(1−ωβ)
][1− ρ(2−ω)2

(1−ωα)(1−ωβ)
]

}
,

if 2

1+
√

1−4(αβ−ρ)
≤ ω < 2,

(4.3)

In this case, any ω satisfies (3.1) is the needed optimal.
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Proof. By using the equivalent form of (3.2) of the equation (2.10), we have

λ = 0.5{(1−ω)2 +1− µω2(2−ω)2

(1−ωα)(1−ωβ)
±
√

[(1− ω)2 + 1− µω2(2−ω)2

(1−ωα)(1−ωβ)
]2 − 4(1− ω)2}.

Let ∆ = [(1− ω)2 + 1− µω2(2−ω)2

(1−ωα)(1−ωβ) ]
2 − 4(1− ω)2

= ω2(2− ω)2[(1− µω2

(1−ωα)(1−ωβ) ][(1− µ(2−ω)2

(1−ωα)(1−ωβ) ].

So both the solutions of equation (2.10) are complex if ∆ < 0, i.e.,

[(αβ − µ)ω2 − ω + 1][(αβ − µ)ω2 − (1− 4µ)ω + (1− 4µ)] < 0, (4.4)

which is equivalent to the following two equations{
(αβ − µ)ω2 − ω + 1 < 0,

(αβ − µ)ω2 − (1− 4µ)ω + (1− 4µ) > 0,
(4.5)

or {
(αβ − µ)ω2 − ω + 1 > 0,

(αβ − µ)ω2 − (1− 4µ)ω + (1− 4µ) < 0.
(4.6)

It is clear that 0 < ω < 2, ω 6= 1 if αβ − µ = 0 but µ 6= 1
4 .

Now, we discuss the solution of the unequal equation of (4.4) by the following
two aspects.

Case I. αβ − µ > 0, 0 < µ < 1
4 , 0 < αβ − µ < 1

4 , 0 < α, β < 1, αβ < 1
4 . From

(4.5) and (4.6), we obtain

|λ| =





|1− ω|, if 2

1+
√

1−4(αβ−µ)
< ω <

1−4µ−
√

(1−4µ)(1−4αβ)

2(αβ−µ)
< 2,

0.5
{
|(1− ω)2 + 1− µω2(2−ω)2

(1−ωα)(1−ωβ)
|

+ω(2− ω)

√
[1− µω2

(1−ωα)(1−ωβ)
](1− µ(2−ω)2

(1−ωα)(1−ωβ)
]

}
,

if 0 < ω ≤ 2

1+
√

1−4(αβ−µ)
or

2(1−4µ)

(1−4µ)+
√

(1−4µ)(1−4αβ)
≤ ω < 2.

(4.7)

Case II. αβ − µ < 0.
(1) αβ < 1

4 , 0 < µ < 1
4 . Then

|λ| =





|1− ω|, if
1−4µ−

√
(1−4µ)(1−4αβ)

2(αβ−µ)
< ω < 2

1+
√

1−4(αβ−µ)
< 1,

0.5
{
|(1− ω)2 + 1− µω2(2−ω)2

(1−ωα)(1−ωβ)
|

+ω(2− ω)

√
[1− µω2

(1−ωα)(1−ωβ)
][1− µ(2−ω)2

(1−ωα)(1−ωβ)
]

}
,

if 0 < ω ≤ 1−4µ−
√

(1−4µ)(1−4αβ)

2(αβ−µ)
or 2

1+
√

1−4(αβ−µ)
≤ ω < 2.

(4.8)
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(2) αβ < 1
4 , µ > 1

4 . Then we have

|λ| =





|1− ω|, if 0 < ω < 2

1+
√

1−4(αβ−µ)
< 1,

0.5
{
|(1− ω)2 + 1− µω2(2−ω)2

(1−ωα)(1−ωβ)
|

+ω(2− ω)
√

[1− µω2

(1−ωα)(1−ωβ)
][1− µ(2−ω)2

(1−ωα)(1−ωβ)
]

}
,

if 2

1+
√

1−4(αβ−µ)
≤ ω < 2.

(4.9)

In addition, we know that |λ| = |1− ω| holds when the ∆ = 0, and note that

the monotonicity of the functions 2

1+
√

1−4(αβ−µ)
and 2(1−4µ)

(1−4µ)+
√

(1−4µ)(1−4αβ)
, it

is easy to obtain (4.1),(4.2) and (4.3) from (4.7), (4.8) and (4.9), respectively.
For the optimal parameters, similar to the Varga’s analysis[19], write the equa-

tion of (2.10) as the form of

(1− λ)(λ− (1− ω)2)

ω2
=

µ(2− ω)2

(1− ωα)(1− ωβ)
λ.

Define two functions:

fω(λ) =
µ(2− ω)2

(1− ωα)(1− ωβ)
λ := kµ(ω)λ, 0 < µ ≤ ρ < 1,

and

gω(λ) =
(1− λ)(λ− (1− ω)2)

ω2
, ω 6= 0.

Obviously, fω(λ) is a straight line with parameters ω, α and µ, through the point
(0,0). And gω(λ) is a quadratical function.

By using the ways and means of Varga, the optimal relaxation factor ωopt

occurs when fω(λ) becomes tangent to gω(λ), i.e., the slope of fω(λ) equals to
that of tangent of gω(λ) with respect to some λ, i.e., g′ω(λ) = kµ(ω). Substituting
the respective expressions to it yields

(2− ω)2µ

(1− ωα)(1− ωβ)
= − 2

ω2
λ+

1 + (1− ω)2

ω2
,

which implies that

ωopt =
2

1 +
√
1− 4(αβ − ρ)

and

ρ(Tωopt,α) =
1−

√
1− 4(αβ − ρ)

1 +
√
1− 4(αβ − ρ)

,

under the conditions of the Case I. Furthermore

ωopt =
2(1− 4ρ)

(1− 4ρ) +
√
(1− 4ρ)(1− 4αβ)
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and

ρ(Tωopt,α) = 1− 2(1− 4ρ)

(1− 4ρ) +
√
(1− 4ρ)(1− 4αβ)

,

with Case II (1). Otherwise it meets Case II (2), this completes the proof. ¤

5. Numerical example

In this section, we will give numerical example to illustrate our results. In
our computations of the example, we set m = 2p2, n = p2, so the total variable
numbers are m+ n = 3p2. We choose right-hand-side vector (pT , qT )T ∈ Rm+n

such that the exact solution of the augmented system (1.1) is (x∗T , y∗T )T =

(1, 1, . . . , 1)T ∈ Rm+n, and the initial iterative vector (x(0)T , y(0)
T
)T = 0.

Choose the given matrices A and B as in [20], we now consider the augmented
system (1.1). That is,

A =

(
I ⊗ T + T ⊗ I 0

0 I ⊗ T + T ⊗ I

)
∈ Rm×n, B =

(
I ⊗ F
F ⊗ I

)
∈ Rm×n,

and

T = 1
h2 · tridiag(−1, 2,−1) ∈ Rp×p, F = 1

h · tridiag(−1, 1, 0) ∈ Rp×p,

in which ⊗ stands for the Kronecker product and h = 1
p+1 represents the dis-

cretization mesh size. Moreover, we choose matrix Q as an approximation to
the matrix BTA−1B, according to the cases listed in Table 1.

Table 1. Choices of matrix Q

Case no. Matrix Q Description

I BT Â−1B Â=tridiag(A)

II BT Â−1B Â=diag(A)

Because of the roundoff errors, all runs with respect to the iteration methods
will be terminated if norm of absolute error vectors ERR < 1.0e− 009, where

ERR =

√
‖x(k) − x∗‖2 + ‖y(k) − y∗‖2√
‖x(0) − x∗‖2 + ‖y(0) − y∗‖2

with (x(k)T , y(k)
T
)T the final approximation solution.

By the SSOR-like method (2.5), the number of iterations (denoted by IT)
and norm of absolute residual vectors (denoted by RES) are reported in Table

2. Here, the least residual is RES=
√
‖p−Ax(k) −By(k)‖2 + ‖q −BTx(k)‖2.

We can see from Table 2 that the iteration algorithm proposed in this paper
may be efficient by choosing proper parameters.
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Table 2. Optimal parameter, spectral radius, IT and RES for (2.5)

m 128 512 1152
n 64 256 576

m+ n 192 768 1728
Case I SOR-like ωopt 0.5958 0.3657 0.2620

ρ(Mωb
) 0.6358 0.7964 0.8591

IT 62 130 200
RES 3.92e-8 7.31e-8 1.16e-7

MSSOR ω0 0.3081 0.1848 0.1316
ρ(Ωω0

) 0.6919 0.8152 0.8684
IT 78 147 218

RES 3.2945e-008 5.9969e-008 1.3892e-007
SSOR-like α = 0.0294 α = 0.7919 α = 0.0185

β = 0.9706 β = 0.2081 β = 0.9815
ωopt 0.3134 0.1987 0.2282

ρ(Tωopt,α) 0.6866 0.8013 0.7718
IT 65 109 205

RES 6.9261e-008 4.3787e-008 3.4844e-008
Case II SOR-like ωopt 0.4664 0.2720 0.1915

ρ(Mωb
) 0.7305 0.8533 0.8992

IT 92 191 293
RES 3.69e-8 7.46e-8 1.13e-7

MSSOR ω0 0.2375 0.1367 0.0960
ρ(Ωω0) 0.7625 0.8633 0.9040

IT 108 208 311
RES 2.8099e-008 4.9659e-008 6.9060e-008

SSOR-like α = 0.4057 α = 0.2028 α = 0.4860
β = 0.5943 β = 0.7972 β = 0.5140

ωopt 0.1763 0.1389 0.1517
ρ(Tωopt,α) 0.8237 0.2720 0.1915

IT 111 218 296
RES 5.4644e-008 4.5357e-008 8.7412e-008

6. Conclusions

In this paper, we have proposed a new generalized iteration method, i.e.
SSOR-like method (2.5), for solving the augmented system (1.1). Meantime, a
functional equation including several parameters is obtained, which is essential
for analysis the convergence of this method. In addition, some convergence
conditions for the method are derived. This paper generalizes some foregone
results, for instance [8,12]. Finally, we offer numerical example, which shows that
this method is efficient by suitable choices of the involved parameters. However,
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the numerical example reflects some faults of our method, such as the optimal
choices of α, β etc., this will be the future work.
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