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ANALYSIS OF SMOOTHING NEWTON-TYPE METHOD FOR

NONLINEAR COMPLEMENTARITY PROBLEMS†
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Abstract. In this paper, we consider the smoothing Newton method for
the nonlinear complementarity problems with P0-function. The proposed
algorithm is based on a new smoothing function and it needs only to solve
one linear system of equations and perform one line search per iteration.
Under the condition that the solution set is nonempty and bounded, the
proposed algorithm is proved to be convergent globally. Furthermore,
the local superlinearly(quadratic) convergence is established under suit-
able conditions. Preliminary numerical results show that the proposed
algorithm is very promising.
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1. Introduction

The nonlinear complementarity problem with P0-function is to find a vector
x ∈ Rn such that

x ≥ 0, F (x) ≥ 0, xTF (x) = 0. (1)

where F : Rn → Rn is a continuously differentiable P0-function.
The nonlinear complementarity problem has attracted much attention due to

its various important applications. We refer the interested readers to the survey
papers [5] and references therein.

Recently, increasing attention has been paid to smoothing Newton methods
for the nonlinear complementarity problems [1, 15, 13, 7, 10, 17, 18]. Smooth-
ing Newton methods employ a smoothing function to reformulate the problem
concerned as a system of smooth equations and then to solve the smooth equa-
tions approximately by using Newton’s method at each iteration. By making
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the parameter to tend to zero, one can hope to obtain a solution of the orig-
inal problem. Qi, Sun and Zhou [15] proposed a smoothing Newton method
for the nonlinear complementarity problems and box constrained variational in-
equalities. It is proved that Qi-Sun-Zhou method converges to a solution of the
problem under a nonsingularity assumption. Zhang, Han and Huang [6] pro-
posed a one-step smoothing Newton method for the nonlinear complementarity
problem with P0-function based on the smoothing symmetric perturbed Fischer
function. The algorithm solves only one linear system of equations, performs
only one line search per iteration and has global and superlinear convergence
under mild conditions. Lately, Zhang [17] proposed a different one-step smooth-
ing Newton method based on a new smoothing function and proved that the
algorithm is globally convergent. However, the convergence rate of the algo-
rithm in [17] was not established.

Motivated by the above analysis, in this paper, we present a new smoothing
Newton method for (1.1). The proposed algorithm is based on a new smoothing
function which is proved to possess good properties and has a better performance
than the method in [17]. It is testified that our algorithm has the following good
properties: (a) We can obtain a solution of (1.1) from any accumulation point
of the iteration sequence generated by our algorithm without requiring a priori
the existence of an accumulation point. Moreover, if the solution set of (1.1) is
nonempty and bounded, the iteration sequence is bounded. (b) Our algorithm
needs only to solve one linear system of equations and perform one line search
per iteration. (c) Under suitable conditions, we prove our algorithm has global
and superlinear(quadratic) convergence. Moreover, our algorithm has better
performance than the method in [17].

The rest of this paper is organized as follows. In the next section, we give some
preliminary results and propose a new smoothing function. Based on the new
smoothing function, we present a new smoothing Newton method. In Section 3,
we establish the global and superlinear(quadratic) convergence of the proposed
algorithm. In Section 4, we report some numerical experiments.

The following notations will be used. All vectors are column vectors, the
subscript T denotes transpose, Rn (respectively, R) denotes the space of n-
dimensional real column vectors (respectively, real numbers), Rn

+ (respectively,
Rn

++) denotes the nonnegative (respectively, positive) orthants of Rn, R+ (re-
spectively, R++) denotes the nonnegative (respectively, positive) orthants in R.
Let N = {1, 2, . . . , n}. For any u ∈ Rn, diag{ui, i ∈ N} denotes the diagonal
matrix whose ith diagonal element is ui and vec{ui, i ∈ N} the vector u. We use
(u, v) for the column vector (uT , vT )T . The symbol ‖ · ‖ stands for the 2-norm.
S denotes the solution set of (1.1). For any α, β ∈ R++, α = O(β) (respectively,
α = o(β) means α/β is uniformly bounded (respectively, tends to zero) as β → 0.
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2.Preliminaries and smoothing method

In this section, we review some useful preliminaries and propose a new smooth-
ing function. Then we present a new smoothing Newton method for (1.1) based
on the new smoothing function and show the method is well defined.

Definition 1. A matrix M ∈ Rn×n is said to be a P0-matrix, if all its principal
minors are non-negative.

Definition 2. A function F : Rn → Rn is said to be a P0-function, if for
all x, y ∈ Rn with x 6= y, there exists an index i0 ∈ N such that xi0 6= yi0 ,
(xi0 − yi0)(F (xi0)− F (yi0)) ≥ 0.

The Chen-Harker-Kanzow-Smale (CHKS) function[9] is defined by

φCHKS(a, b) = a+ b−
√
(a− b)2. (1)

Obviously, the CHKS function has the following property.

Lemma 1. For any (a, b) ∈ R2, we have

φCHKS(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0. (2)

Our algorithm is based on the following smoothing function φ : R3 → R given
by

φ(µ, a, b) = a+ b−
√
(a− b)2 + µ2 + t(a+

√
a2 + µ2)(b+

√
b2 + µ2), (3)

where t is a non-negative constant.

Lemma 2. For any (a, b) ∈ R2, we have

φ(0, a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0. (4)

Proof. Suppose φ(0, a, b) = 0. Then by (3), we get

a+ b−
√
(a− b)2 + t(a+

√
a2)(b+

√
b2) = 0. (5)

If either a < 0 or b < 0, by (5), we have a+b−
√
(a− b)2 = 0, which contradicts

Lemma 1. Hence, a ≥ 0, b ≥ 0. By a simple computation, we can easily get
ab = 0 from (5). Conversely, suppose a ≥ 0, b ≥ 0, ab = 0. Then φ(0, a, b) =

a + b −
√
(a− b)2. From Lemma 1, we obtain φ(0, a, b) = 0. The proof is

completed. ¤

Lemma 3. For any (µ, a, b) ∈ R++ ×R2, we have

φ′
a(µ, a, b) > 0, φ′

b(µ, a, b) > 0.

Proof. By a simple calculation, it follows that

φ′
a(µ, a, b) = 1− a− b√

(a− b)2 + µ2
+ t(1 +

a√
a2 + µ2

)(b+
√
b2 + µ2),
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φ′
b(µ, a, b) = 1− a− b√

(a− b)2 + µ2
+ t(1 +

b√
b2 + µ2

)(a+
√
a2 + µ2).

Hence, φ′
a(µ, a, b) > 0, φ′

b(µ, a, b) > 0. The proof is completed. ¤
Let z := (µ, x) ∈ R++ ×Rn and

H(z) :=

(
σµ

Φ(µ, x)

)
, (6)

where

Φ(µ, x) :=




φ(µ, x1, F1(x))
...

φ(µ, xn, Fn(x))


 , (7)

and σ is a positive center parameter.
By (4), we can easily see that solving (1.1) is equivalent to solving the following

equation:

H(z) = 0, (8)

in the sense that their solution sets are coincident. ¤

Lemma 4. Let H : Rn+1 → Rn+1 and Φ : Rn+1 → Rn be defined by (6) and
(7) , respectively. Then
(a) Φ is continuously differentiable at any z = (µ, x) ∈ R++ ×Rn.
(b) H is continuously differentiable at any z = (µ, x) ∈ R++ × Rn with its
Jacobian

H ′(z) =
(

σ 0
v(z) w(z)

)
, (9)

where

v(z) := vec{φ′(µ, xi, Fi(x)) : i ∈ N},
w(z) := D1(x) + tD2(x) + [D3(x) + tD4(x)]F

′(x),

D1(z) := diag

{
1− xi − Fi(x)√

(xi − Fi(x))2 + µ2
: i ∈ N

}
,

D2(z) := diag

{[
1 +

xi√
x2
i + µ2

][
Fi(x) +

√
F 2
i (x) + µ2

]
: i ∈ N

}
,

D3(z) := diag

{
1 +

xi − Fi(x)√
(xi − Fi(x))2 + µ2

: i ∈ N

}
,

D4(z) := diag

{[
1 +

Fi(x)√
F 2
i (x) + µ2

][
xi +

√
x2
i + µ2

]
: i ∈ N

}
.

(c) If F is a P0-function, then the matrix H ′(z) is nonsingular on R++ ×Rn.
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Proof. (a). It is easy to see that Φ is continuously differentiable at any z =
(µ, x) ∈ R++ ×Rn.

(b). From (6) and (a), it follows thatH is continuously differentiable onR++×
Rn. For any µ > 0, by a simple calculation from (6) , we can easily obtain (9) .
Clearly, (Dj(z))ii > 0, j = 1, 2, 3, 4 for all i ∈ N . Hence, Dj(x), j = 1, 2, 3, 4 are
positive diagonal matrices. Since t > 0, the diagonal matricesD1(x)+tD2(x) and
D3(x)+tD4(x) are positive. In order to show that H ′(z) is nonsingular, we need
only to prove that the matrix w(z) is. In fact, since F is a P0-function, then F ′(x)
is a P0-matrix for all x ∈ Rn by Theorem 5.8 in [12]. By a simple calculation,
we can obtain that all principal minors of the matrix (D3(x) + tD4(x))F

′(x)
are nonnegative. From Definition 1, the matrix (D3(x) + tD4(x))F

′(x) is a P0-
matrix. Hence, by Theorem 3.3 in [2], the matrix D1(x) + tD2(x) + (D3(x) +
tD4(x))F

′(x) is nonsingular, which implies that the matrix H ′(z) is nonsingular.
¤

Now, we give our smoothing Newton algorithm for (1.1). Let γ ∈ (0, 1) and
define a function ρ : R++ ×Rn → R+ by

ρ(z) := γ‖H(z)‖ 1
2min{σ, ‖H(z)‖ 1

2 }. (10)

Obviously, we have ρ(z) ≤ γσ‖H(z)‖ 1
2 , ρ(z) ≤ γ‖H(z)‖.

Algorithm 2.1.(A modified smoothing Newton method)
Step 0: Choose δ, τ ∈ (0, 1), σ ∈ (0, 1] and µ0 ∈ R++. Let µ̄ = (σµ0, 0) ∈
R++ × Rn and x0 ∈ Rn be an arbitrary point. Let z0 = (µ0, x

0). Choose
γ ∈ (0, 1) such that γµ0 < 1 and γ‖H(z0)‖ < 1. Set k := 0.
Step 1: If ‖H(zk)‖ = 0, stop. Otherwise, let ρk = ρ(zk).
Step 2: Compute ∆zk = (∆µk,∆xk) by

H(zk) +H ′(zk)∆zk = ρkµ̄. (11)

Step 3: Let mk be the smallest nonnegative integer m such that

‖H(zk + δm∆zk)‖ ≤ [1− τ(1− γµ0)δ
m]‖H(zk)‖, (12)

and let λk := δmk .
Step 4: Set zk+1 = zk + λk∆zk and k := k + 1. Go to Step 1.

Next, we give the following theorem which shows that Algorithm 2.1 is well-
defined and generates an infinite sequence with nice properties.

Define the set Ω by

Ω := {z = (µ, x) ∈ Rn+1 : ρ(z)µ0 ≤ σµ}.
Theorem 1. Let the sequence {zk = (µk, x

k)} be generated by Algorithm 2.1.
Then Algorithm 2.1 is well-defined.

Proof. Suppose that µk > 0. Since F is a continuously differentiable P0-function,
by Lemma 4 (c), it follows that the matrix H ′(zk) is nonsingular. Hence, Step
2 is well-defined at the kth iteration. For any α ∈ (0, 1], let

R(α) = H(zk +∆zk)−H(zk)− αH ′(zk)∆zk. (13)
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From Lemma 4 (a), we can easily obtain that ‖R(α)‖ = o(α).
By (10), (11) and (13) , we get

‖H(zk + α∆zk)‖ = ‖H(zk) + αH ′(zk)∆zk +R(α)‖
= ‖(1− α)H(zk) + αρkµ̄+R(α)‖
≤ (1− α)‖H(zk)‖+ αγµ0‖H(zk)‖+ o(α)

= (1− α(1− γµ0))‖H(zk)‖+ o(α), (14)

which implies that there exists constants ᾱ ∈ (0, 1] and τ ∈ (0, 1) such that

‖H(zk + α∆zk)‖ ≤ (1− τ(1− γµ0)α)‖H(zk)‖
holds for any α ∈ (0, ᾱ]. Hence, Step 3 is well-defined at the kth iteration. ¤
Theorem 2. Let the sequence {zk = (µk, x

k)} be generated by Algorithm 2.1.
Then we have
(a) µk ∈ R++ for all k ≥ 0;
(b) the sequences {ρk} and {‖H(zk)‖} are monotonically decreasing;
(c) zk ∈ Ω for all k ≥ 0;
(d) the sequence {µk} is monotonically decreasing.

Proof. (a) Obviously, µ0 > 0 by the choice of the starting point in Algorithm
2.1. Suppose µk > 0. We obtain that µk+1 > 0 and thus the conclusion holds.
In fact, for any α ∈ (0, 1], by (11) and Step 4 in Algorithm 2.1, we have

µk+1 = µk + λk∆µk = µk + λk
ρkµ0 − σµk

σ

= (1− λk)µk + λk
ρkµ0

σ
> 0. (15)

(b) From (12), it is obvious that ‖H(zk+1)‖ ≤ ‖H(zk)‖, that is, the se-

quence {‖H(zk)‖} is monotonically decreasing. If ‖H(zk)‖ 1
2 > σ, then ρk =

γσ‖H(zk)‖ 1
2 . By the definition of ρ(·), we have ρk+1 ≤ γσ‖H(zk+1)‖ 1

2 . Hence,
we have ρk ≥ ρk+1. Otherwise, we have ρk = γ‖H(zk)‖. Since ‖H(zk+1)‖ ≤
‖H(zk)‖ and ρk+1 ≤ γ‖H(zk+1)‖, it follows that ρk ≥ ρk+1. Therefore, the
sequence {ρk} is monotonically decreasing.

(c) By the choice of the parameter γ and the definition of ρ(·), we have
ρ(z0) ≤ σ. Then ρ(z0)µ0 ≤ σµ0. Hence, z0 ∈ Ω. Suppose that zk ∈ Ω, that is,
ρ(zk)µ0 ≤ σµk. By (11) and Step 4 in Algorithm 2.1, we have

σµk+1 − ρk+1µ0 = (1− λk)σµk + λkρkµ0 − ρk+1µ0

≥ (ρk − ρk+1)µ0

≥ 0,

where the last inequality follows from (b). Hence, zk+1 ∈ Ω.
(d) By (15), (a) and (c), we have that

0 < µk+1 = (1− λk)µk + λk
ρkµ0

σ
≤ (1− λk)µk + λkµk

= µk,
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which implies the sequence {µk} is monotonically decreasing. The whole proof
of the theorem is completed. ¤

3. Convergence analysis

In this section, we present the convergence analysis of Algorithm 2.1. By
Theorem 2, Algorithm 2.1 generates an infinite sequence {zk}. In the following,
we will prove that any accumulation point of the iteration sequence {zk} is a
solution of (8).

Assumption 1. The solution set S = {x ≥ 0, F (x) ≥ 0, xTF (x) = 0} of (1) is
nonempty and bounded.

Define the level set

L(µ, c) := {x ∈ Rn : ‖H(µ, x)‖ ≤ c}, (1)

where µ > 0 and c > 0.

Lemma 5. For any 0 < µ1 ≤ µ2, the set

L(c) :=
⋃

µ1≤µ≤µ2

L(µ, c),

is bounded.

Proof. Suppose L(c) is unbounded. Then for some fixed c > 0, there exists a
sequence {(µk, x

k)} such that

µ1 ≤ µk ≤ µ2, ‖H(µk, x
k)‖ ≤ c, ‖xk‖ → +∞.

Since {xk} is unbounded, the index set J := {i ∈ N : {xk
i } is unbounded} 6= ∅.

Without loss of generality, we can assume that |xk
j | → +∞ for all j ∈ J . Define

the sequence {x̂k} as follows:

x̂k
j =

{
xk
j if j 6∈ J ,

0 if j ∈ J .
(2)

Then, {x̂k} is bounded. Since F is a P0-function, by Definition 2, there exists
an index j ∈ N such that

(xk
j − x̂k

j )(Fj(x
k)− Fj(x̂

k)) ≥ 0. (3)

Together with (3.2), we have

xk
j (Fj(x

k)− Fj(x̂
k)) ≥ 0, j ∈ J. (4)

Since j ∈ J , we get |xk
j | → +∞.

In the following, we consider two cases:
Case 1: Suppose {xk

j } → +∞. Since Fj(x̂
k) is bounded by the continuity of

Fj , (3.4) implies that Fj(x
k) 6→ −∞. Since µ1 ≤ µk ≤ µ2, we have x

k
j +Fj(x

k)−√
(xk

j − Fj(xk))2 + µ2
k is bounded below and t(xk

j +
√
(xk

j )
2 + µ2

k)(Fj(x
k) +√

(Fj(xk))2 + µ2
k) → +∞. Thus, φ(µk, x

k
j , Fj(x

k)) → +∞.
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Case 2: Suppose {xk
j } → −∞. Since Fj(x̂

k) is bounded by the continuity

of Fj , (3.4) implies that Fj(x
k) 6→ +∞. Since µ1 ≤ µk ≤ µ2, we have xk

j +

Fj(x
k) −

√
(xk

j − Fj(xk))2 + µ2
k → −∞ and t(xk

j +
√
(xk

j )
2 + µ2

k) (Fj(x
k) +√

(Fj(xk))2 + µ2
k) is bounded above. Thus, φ(µk, x

k
j , Fj(x

k)) → −∞.

In either case, we have that ‖Φ(µk, x
k)‖ → +∞, and thus ‖H(µk, x

k)‖ →
+∞, which contradicts ‖H(µk, x

k)‖ ≤ c. The proof is completed. ¤
From Lemma 5, we can easily obtain the following result.

Corollary 1. Suppose that F is a P0-function and µ > 0. Then we have

lim
‖x‖→+∞

‖H(z)‖ → +∞.

Lemma 6. Let H(·) be defined by (6) and {zk = (µk, x
k)} be the iteration

sequence generated by Algorithm 2.1. Then, the sequence {H(zk)} is convergent.
If it does not converge to zero, then the sequence {zk} is bounded.

Proof. From Theorem 2 (b), we can easily obtain the sequences {H(zk)} and
{ρk)} are convergent. Then there exists ρ̂ such that ρk → ρ̂ as k → ∞. If

{H(zk)} does not converge to zero, then there exists Ĥ > 0 such thatH(zk) → Ĥ

as k → ∞. Then we have ρ̂ = γĤ
1
2min{σ, Ĥ 1

2 } > 0.
By (15) and Theorem 2 (c), we can obtain that

µk+1 = µk + λk∆µk = (1− λk)µk +
λkρkµ0

σ
≤ µk. (5)

Thus, we have that

0 < ρ̂µ0 ≤ µk ≤ µ0, for all k ≥ 0. (6)

Let c := ‖H(z0)‖ where z0 is the starting point in Algorithm 2.1 and L(c) :=⋃
ρ̂µ0≤µk≤µ0

L(µk, c), where L(µk, c) is defined by (3.1). Since xk ∈ L(µk, c), it is

obvious that xk ∈ L(c). From Lemma 5, we have the sequence {xk} is bounded
and thus the sequence {zk} is bounded. The proof is completed. ¤
Theorem 3. Let {zk = (µk, x

k)} be the iteration sequence generated by Algo-
rithm 2.1. Suppose Assumption 1 holds. Then
(a) the sequences {‖H(zk)‖} and {µk} tend to zero, and hence any accumulation
point of {zk} is a solution of (8);
(b) {zk} is bounded and hence it has at least one accumulation point z̃ = (µ̃, x̃)
with H(z̃) = 0 and thus x̃ ∈ S.

Proof. From Lemma 6, we have that the limit point of {‖H(zk)‖} exists, denoted

by Ĥ. Suppose {‖H(zk)‖} does not converge to zero. Then we have Ĥ > 0. By
Lemma 6, it follows that {zk} is bounded. Let z̃ = (µ̃, x̃) be an accumulation
point of {zk}.

Without loss of generality, we assume that {zk} converges to z̃. Then, by the

continuity of H(·), we have ‖H(z̃)‖ = Ĥ > 0. By the definition and continuity
of ρ(·), we can get {ρk} converges to ρ̃ > 0. By (12), we have lim

k→+∞
λk = 0.
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From Step 3 in Algorithm 2.1, it follows that

‖H(zk + δmk−1∆zk)‖ > [1− τ(1− γµ0)δ
mk−1]‖H(zk)‖, (7)

which implies

‖H(zk + δmk−1∆zk)‖ − ‖H(zk)‖
δmk−1

> −τ(1− γµ0)‖H(zk)‖. (8)

Let k → ∞ in (8), we have

−τ(1− γµ0)‖H(z̃)‖ ≤ H(z̃)TH ′(z̃)∆z̃

‖H(z̃)‖ . (9)

On the other hand, let k → ∞ in (11), we have

H(z̃) +H ′(z̃)∆z̃ = ρ̃µ̄. (10)

Combing (9) and (10), we get

−τ(1− γµ0)‖H(z̃)‖ ≤ H(z̃)T (ρ̃µ̄−H(z̃))

‖H(z̃)‖ = ρ̃µ0 − ‖H(z̃)‖
≤ (γµ0 − 1)‖H(z̃)‖.

Therefore, we deduce that (1 − γµ0)(1 − τ) ≤ 0, which contradicts the fact

γµ0 < 1 and τ < 1. Hence, Ĥ = 0 and thus µ̃ = 0, z̃ is a solution of (1.1). (a)
is proved.

We now give the proof of (b). From Theorem 2 (d), it follows that {µk} is
bounded. It is sufficient to show that {xk} is bounded. From (a), we obtain
‖H(zk)‖ → 0 as k → ∞. Therefore, by the famous mountain pass theorem [4]
and by following the similar proof lines of [6], we get that {xk} is bounded and
hence {zk} is. Hence, {zk} has at least one accumulation point z̃. By (a), we
have H(z̃) = 0 and x̃ ∈ S. ¤

Next we give the analysis of the convergence rate of Algorithm 2.1. To estab-
lish the convergence rate of Algorithm 2.1, we need the concept of semismooth-
ness, which was originally introduced in [11] for functionals and extended in [16]
for vector-valued functions. The composition of semismooth functions is still a
semismooth function [11].

Lemma 7. Suppose that F : Rn → Rn is a locally Lipschitzian function. Then
(1) F has the generalized Jacobian ∂F (x) as in Clarke [3]. And F ′(x;h), the
directional derivative of F at x in the direction h, exists for any h ∈ Rn if F
is semismooth at x. Also, F is semismooth at x ∈ Rn if and only if all its
component functions are.
(2) F is semismooth at x if and only if for any V ∈ ∂F (x+ h), h → 0,

‖V h− F ′(x;h)‖ = o(‖h‖).
Also, ‖F (x+ h)− F (x)− F ′(x;h)‖ = o(‖h‖).
(3) F is strongly semismooth at x if and only if for any V ∈ ∂F (x+ h), h → 0,

‖V h− F ′(x;h)‖ = O(‖h‖2).
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Also, ‖F (x+ h)− F (x)− F ′(x;h)‖ = O(‖h‖2).
Similar to the proof of Theorem 8 in [15], we can present the following theo-

rem.

Theorem 4. Suppose that Assumption 1 is satisfied and z̃ = (µ̃, x̃) is an accu-
mulation point of the iteration sequence {zk} generated by Algorithm 2.1. If all
V ∈ ∂H(z̃) are nonsingular. Then,

(a) λk ≡ 1 for all zk sufficiently close to z̃;
(b) {zk} converges to z̃ superlinearly, i.e., ‖zk+1 − z̃‖ = o(‖zk − z̃‖) and

µk+1 = o(µk);
(c) {zk} converges to z̃ quadratically, if F ′ is Lipschitz continuous on Rn,

i.e., ‖zk+1 − z̃‖ = O(‖zk − z̃‖2) and µk+1 = O(µ2
k). ¤

Proof. From Theorem 3, H ′(z̃) = 0 and z̃ is a solution of (8). Since all V ∈
∂H(z̃) are nonsingular, it follows from Proposition 3.1 in [16] that for all zk

sufficiently close to z̃, we have ‖H ′(zk)−1‖ ≤ C where C > 0 is a constant.
Since H(·) is semismooth (strongly semismooth if F ′ is Lipschitz continuous on
Rn, respectively) at z̃, by Lemma 7, for all zk sufficiently close to z̃, we have

‖H(zk)−H(z̃)−H ′(zk)(zk − z̃)‖ = o(‖zk − z̃‖) (O(‖zk − z̃‖2)). (11)

Notice that H(·) is locally Lipschitz continuous near z̃. Hence, for all zk suffi-
ciently close to z̃, we get

‖H(zk)‖ = O(‖zk − z̃‖). (12)

From (11), (11) and (12) and the definition of ρ(·), it follows that
‖zk +4zk − z̃‖ = ‖zk +H ′(zk)−1[−H(zk) + ρkµ̄]− z̃‖

≤ ‖H ′(zk)−1‖(‖H(z̃)−H(zk) +H ′(zk)(zk − z̃)‖+ ρkµ0)

≤ C[‖H(z̃)−H(zk) +H ′(zk)(zk − z̃)‖+ γσµ0‖H(zk)‖]
= o(‖zk − z̃‖) (= O(‖zk − z̃‖2)) (13)

Similar to the proof of Theorem 3.1 in [14], for all zk sufficiently close to z̃, we
get

‖zk − z̃‖ = O(‖H(zk)−H(z̃)‖). (14)

Therefore, for all zk sufficiently close to z̃, we have

‖H(zk +4zk)‖ = O(‖zk +4zk − z̃‖)
= o(‖zk − z̃‖) = O(‖zk − z̃‖2)
= o(‖H(zk)−H(z̃)‖) (= O(‖H(zk)−H(z̃)‖2))
= o(‖H(zk)‖) (= O(‖H(zk)‖2)). (15)

It follows from Theorem 3 that for all zk sufficiently close to z̃, λk = 1. Thus,
zk+1 = zk +4zk, which combining with (13) implies

‖zk+1 − z̃‖ = o(‖zk − z̃‖) (= O(‖zk − z̃‖2)).
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By (11), for all sufficiently large k, we have

µk+1 = µk +4µk = ρkµ0 = O(‖H(zk)‖). (16)

Therefore, for all zk sufficiently close to z̃, µk+1 = o(µk) (µk+1 = O(µ2
k)). ¤

4. Numerical experiments

In this section, we report some numerical experiments. We tested our algo-
rithm and Algorithm 2.4 in [17] respectively on PC with 1.60 GHz CPU professor
and 1.5G memory and Windows XP operation system. The numerical results
of all algorithms are reported on Table 1. The stopping rule is ‖H(zk)‖ ≤ 10−6

and the starting point x0 is randomly generated in the interval (0,1).

In Tables 1 and 2, the meanings of each column are listed below:

P: the tested problem;
Dim: the dimension of the problem;
NI: the total number of iterations;
Res: the value of ‖H(zk)‖ when the stopping rule is satisfied;
CPU: the CPU time for solving the underlying problem in seconds.

In our tests, for the proposed algorithm, we always set δ = 0.95, τ = 10−2,
µ0 = 10−3 and t is randomly generated in the interval (0,5); for Algorithm 2.4
in [17], we choose the parameters as δ = 0.95, γ = 10−3, σ = 0.8, µ0 = 10−3 and
τ is randomly generated in (0,5). In the following, we give the test problems in
detail, which are tested five times by using the proposed algorithm and Algorithm
2.4 in [17], respectively.

Problem 4.1. This is the fourth example tested in [8], where F (x) =
(f1(x), . . . , f5(x)) given by

fi(x) = 2 exp(

5∑

i=1

(xi − i+ 2)2)(xi − i+ 2), 1 ≤ i ≤ 5.

This problem is also tested by Qi-Sun-Zhou [15], etc, which has one solution:
(0,0,1,2,3). The tested results are listed in Table1.

Problem 4.2. This is the fifth example tested in [8], where F (x) = (f1(x),
. . . , f4(x)) given by

f1(x) = −x2 + x3 + x4,
f2(x) = x1 − (4.5x3 + 2.7x4)/(x2 + 1),
f3(x) = 5− x1 − (0.5x3 + 0.3x4)/(x3 + 1),
f4(x) = 3− x1.

This problem is also tested by Qi-Sun-Zhou [15], etc, which has infinitely many
solutions: (λ, 0, 0, 0), where λ ∈ [0, 3]. The tested results are listed in Table 1.

Problem 4.3. This problem is a nonlinear complementarity, which is taken
from [17], defined by

F (x) = D(x) +Mx+ q,
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Table 1. Computational results for Problems 4.1 and 4.2

P Dim Algorithm 2.4 Proposed algorithm
NI Res CPU NI Res CPU

4.1 5 18 1.1832e-007 4.1463e-003 14 8.0324e-012 3.2014e-003
5 31 8.4084e-007 6.8096e-003 16 7.1019e-010 3.6527e-003
5 26 4.8902e-007 5.7071e-003 15 3.4987e-009 3.4267e-003
5 20 5.2526e-008 4.5642e-003 16 5.5450e-009 3.8983e-003
5 36 9.2312e-007 7.8450e-003 16 9.5096e-010 3.8434e-003

4.2 4 11 6.6801e-007 2.2201e-003 3 2.7238e-009 8.3736e-004
4 17 6.4827e-007 3.2927e-003 4 1.4028e-011 1.0018e-003
4 12 6.8768e-007 2.3441e-003 4 4.6879e-012 9.8412e-004
4 18 4.9124e-007 3.3944e-003 3 6.0615e-008 8.4231e-004
4 20 6.9740e-007 3.6431e-003 4 4.4689e-013 1.0023e-003

Table 2. Computational results for Problem 4.3

Dim Algorithm 2.4 Proposed algorithm
NI Res CPU NI Res CPU

100 33 7.1485e-007 8.1854e-002 19 7.6769e-007 4.7559e-002
100 36 4.8804e-007 8.5149e-002 21 8.3991e-007 5.2393e-002
100 41 6.2296e-007 1.1817e-001 22 7.5553e-007 5.5149e-002
100 53 8.1238e-007 1.2391e-001 20 5.0326e-007 5.1009e-002
100 43 9.5949e-007 1.0575e-001 21 1.6449e-007 5.3153e-002

200 46 7.4997e-007 5.8056e-001 22 2.9439e-007 2.8395e-001
200 60 6.9471e-007 7.7789e-001 20 3.2470e-007 2.5379e-001
200 62 9.2396e-007 7.9508e-001 28 1.6676e-007 3.5690e-001
200 55 9.3677e-007 6.9999e-001 26 7.4338e-007 3.3682e-001
200 52 9.8390e-007 6.6783e-001 24 5.0895e-007 3.0456e-001

300 52 9.3808e-007 2.1754e+000 19 9.1306e-007 7.9048e-001
300 60 7.7297e-007 2.5111e+000 23 8.1698e-007 9.5973e-001
300 69 9.0646e-007 2.8845e+000 26 8.2650e-007 1.0831e+000
300 71 7.2812e-007 2.9716e+000 25 2.3413e-007 1.0424e+000
300 55 6.1184e-007 2.2751e+000 22 7.2638e-007 9.1250e-001

where M = ATA + B, A ∈ Rn×n and its entries are randomly generated in
the interval (−5, 5) and a skew symmetric matrix B is generated in the same
way; The components of q are generated from a uniform distribution in the
interval (−50, 50); The components of D(x) are Dj(x) = dj arctan(xj), where
dj ∈ (0, 5). In this test, we choose n = 100, 200, 300 as the dimension of the
problem, respectively. The results are listed in Table 2.

From Tables 1 and 2, it is observed that the number of iterations and CPU
time in our algorithm are better than that in Algorithm 2.4 [17]. In Table 2,
for the Problem 4.3, we tested it by using different dimensions. We can see that
the number of iterations in our algorithm do not change much. Therefore, we
obtain that our algorithm is more effective than Algorithm 2.4 in [17].
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