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AN EXACT PENALTY FUNCTION METHOD FOR SOLVING

A CLASS OF NONLINEAR BILEVEL PROGRAMS†

YIBING LV

Abstract. In this paper, a class of nonlinear bilevel programs, i.e. the
lower level problem is linear programs, is considered. Aiming at this special
structure, we append the duality gap of the lower level problem to the upper
level objective with a penalty and obtain a penalized problem. Using the
penalty method, we give an existence theorem of solution and propose an
algorithm. Then, a numerical example is given to illustrate the algorithm.
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1. Introduction

Bilevel programming (BLP) has increasingly been addressed in literature,
both from the theoretical and computational points of view. It is characterized
by the existence of two optimization problems in which the constraint region of
the first-level problem is implicitly determined by another optimization problem.
Let F, f : Rm+n → R, G : Rm → Rp, g : Rm+n → Rq be continuously differen-
tiable functions and x ∈ Rm, y ∈ Rn, then the BLP problem can be formulated
as [2, 5]:

min
x

F (x, y)

s.t. G(x) ≤ 0 (1)

min
y

f(x, y)

s.t. g(x, y) ≤ 0

Due to its nested structure a BLP problem, even in the linear case, i.e, both
the upper and lower level problems are linear, is a non-convex optimization
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and NP-hard problem[1, 3]. However, BLP problems have been used so wildly
in management(network facility location, environment regulation), economic
planning(electric power price, oil production), engineering design and optimal
control[2] that many researchers have devoted to this promising field, and some
feasible approaches have been developed for the BLP problem, which includes
branch and bound approach[6], decent approach[10], trust region approach[4], et
al. In this paper, we pay attention to a class of nonlinear BLP problem, which
can be written as:

max
x≥0

F (x, y)

s.t. max
y≥0

f(x, y) = cx+ dy (2)

s.t. Ax+By ≤ r

where c ∈ Rm, d ∈ Rn, r ∈ Rq, A ∈ Rq×m, B ∈ Rq×n.
Noted that for the above problem (2), Wang[11] proposed a global optimiza-

tion approach based on genetic algorithm. However, in [11] the objective function
F (x, y) is limited to quadratic, and to execute the algorithm all the vertices of
the feasible region of the lower level’s duality must be founded in advance, then
the practicability of the algorithm proposed in [11] is weakened greatly. Here,
we aim to propose a practical algorithm for the nonlinear BLP problem (2). Our
strategy can be outlined as follows. By appending the duality gap of the lower
level problem to the upper level objective with a penalty, we obtain a penalized
problem and give an existence theorem of solution using the penalty method.
Then, inspired from our previous work[8], we propose an efficient algorithm for
the nonlinear BLP problem (2).

Towards these ends, the rest of the paper is organized as follows. In Section
2, we present the main theoretical results. In section 3, we give the algorithm
and an example to illustrate the algorithm proposed. Finally in section 4, we
conclude the paper.

2. Main results

Throughout the paper, we assume that the following assumption is satisfied:
(H) The constraint region of the nonlinear BLP problem S = {(x, y) : Ax+

By ≤ r}is nonempty and compact.
In fact, if the assumption (H) is satisfied, then similar to Theorem 1 in [9],

the inducible region of problem (2) is nonempty.
For a given x, cx in problem (2) is just a constant, thus the follower’s can

become the following:

max
y≥0

dy (3)

s.t. By ≤ r −Ax
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The duality of problem (3) is the following:

min
w≥0

wT (r −Ax) (4)

s.t. wTB ≥ d

Following the theory of duality, it is obvious that wT (r − Ax) − dy ≥ 0, and if
the terms y and w solve problem (3) and (4) respectively, wT (r−Ax)− dy = 0.
Then we can construct the following penalized problem for problem (2):

P (K) = max
(x,y,w)

F
′
(x, y, w, k) = F (x, y)−K[wT (r −Ax)− dy]

s.t. Ax+By ≤ r (5)

wTB ≥ d

x, y, w ≥ 0

where K > 0 is penalty value.
Let W = {w : wTB ≥ d,w ≥ 0} and Wv denote the extreme points of W ,

then we have the following result.
Theorem 1. Suppose that assumption (H) is satisfied and for a given value of
w and fixed K, suppose we define:

Q(w,K) = max
(x,y)∈Z

F
′
(x, y, w,K)

Then a solution to the problem

max
w∈W

Q(w,K)

will occur at some w∗ ∈ Wv.

Proof. Firstly, we will prove that Q(w,K) is convex. Let w1, w2 ∈ W and
λ ∈ (0, 1). Then

Q(λw1 + (1− λ)w2,K)

= max
(x,y)∈Z

{F (x, y)−K[(λw1 + (1− λ)w2)
T (r −Ax)− dy]}

≤ λ max
(x,y)∈Z

{F (x, y)−K[wT
1 (r −Ax)− dy]}

+(1− λ) max
(x,y)∈Z

{F (x, y)−K[wT
2 (r −Ax)− dy]}

≤ λQ(w1,K) + (1− λ)Q(w2,K)

Thus, Q(w,K) is convex. As W is polyhedron, then maximizing a convex func-
tion Q(w, k) over W will yield an optimal solution at a vertex of W . The proof
is completed. ¤

Theorem 1 is based on a fixed value of K. We now show that finite value of
K would yield an exact solution to the overall problem (5), where the duality
gap wT (r −Ax)− dy becomes zero.
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Theorem 2. Let assumption (H) hold. Let {(xK , yK , wK)} be a sequence of
solutions of the problem P (K), then there exists K1 ∈ R+, such that for all
K ≥ K1, w

T
K(r −AxK)− dyK = 0.

Proof. Supposing (x∗, y∗, w∗) is the optimal solution of problem (2), then (w∗)T (r−
Ax∗)− dy∗ = 0.

For (xK , yK , wK) ∈ argmax F
′
(x, y, w,K), then

F (xK , yK)−K[wT
K(r −AxK)− dyK ] ≥ F (x∗, y∗)

It means that:

wT
K(r −AxK)− dyK ≤ F (xK , yK)− F (x∗, y∗)

K

≤
max

(x,y)∈Z
[F (x, y)− F (x∗, y∗)]

K
≤ m

K

wherem is some constant. Note that wT
K(r−AxK)−dyK ≥ 0 for all (xK , yK , wK) ∈

Z ×W . Thus, as K → ∞. However, since Wv is finite, wT
K(r−AxK)− dyK = 0

for some large finite value of K, say K1. ¤

We now show that, by increasing K monotonically, we can achieve the local
solution of problem (2). For that, we need the following theorem that is also the
essence of penalty function methods, then we omit the proof.
Theorem 3. In problem (5), the objective function F (x, y) and the duality gap
wT (r−Ax)− dy are both monotonically non-increasing in the penalty value K .

Now, we are able to establish the following theorem which shows that the
penalty is exact.
Theorem 4. Assume that assumption (H) is satisfied. Let (xK , yK , wK) be a
sequence of solutions of problem P (K), K ∈ R+. Then there exists K∗ ∈ R+,
such that for all K ≥ K∗, (xK , yK) solves problem (2).

Proof. Let K∗ = K1, then the theorem is obvious following theorem 2. ¤

The following theorem and remark will be used for a test of optimality in the
algorithm proposed in the following section.
Theorem 5. Assume that assumption (H) is satisfied. Let K ∈ R+, and
u,w ∈ W . Let (x(w), y(w)) be a solution to the problem Q(w,K). Then,

Q(u,K) ≥ Q(w,K)−K(u− w)T (r −Ax(w)) (6)

Proof. As (x(w), y(w)) solves Q(w,K), we have

Q(w,K) = F (x(w), y(w))−K[wT (r −Ax(w))− dy(w)] (7)

and

Q(u,K) ≥ F (x(w), y(w))−K[uT (r −Ax(w))− dy(w)] (8)
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Following (7) and (8), we can deduce that Q(u,K) ≥ Q(w,K)−K(u−w)T (r−
Ax(w)). ¤
Remark. Let

αK(w) = min
u∈W

(u− w)T (r −Ax(w)).

Following theorem 4, if αK(w) < 0, then

w 6= w∗ ∈ argmax{Q(w,K) : w ∈ W} (9)

By (9), if αK(w∗) < 0, and is reached at u = u∗, then we can select u∗ as
the next vertex to go to. If αK(w∗) ≥ 0, thus the solution [x(w∗), y(w∗)] is the
best solution for the current value of K. At this value of K, if the duality gap
is zero, then by Theorem 3, we are at a local optimal solution for the problem.
If not, we increase K, and go through another iteration.

3. The algorithm

From Theorem 5, we can propose an algorithm, which needs only to solve
a serials of nonlinear and linear programs to obtain the optimal solutions of
problem (2).
Algorithm

Step 0: Choose K > 0(K large), w0 ∈ Wv and λ > 0, i = 0.

Step 1: Solve max
(x,y)∈Z

F
′
(x, y, wi,K), get a solution [x(wi), y(wi)].

Step 2: Solve min
w∈W

(w − wi)T (r − Ax(wi)), obtain a solution w∗(wi) and

optimal value αK(wi).

Step 3: 1) If αK(wi) < 0, let wi+1 = w∗(wi), i=i+1, go to Step 1.

2) If αK(wi) ≥ 0 and (wi)T (r−Ax(wi))− dy(wi) > 0, let K = K + λ,
i=i, go to Step 1.

3) If αK(wi) ≥ 0 and (wi)T (r−Ax(wi))−dy(wi) = 0, then the optimal
solution of problem (2) is [x(wi), y(wi)].

To illustrate the algorithm, we consider the following example[4].

max
x

F (x, y) = −x2 − y2 + 16x+ 5xy

s.t. 0 ≤ x ≤ 20 (10)

max
y

f(x, y) = y

s.t. x+ y − 20 ≤ 0

0 ≤ y ≤ 10

By appending the duality gap of the lower level problem to the upper level
objective with a penalty, we can obtain the following penalized problem:

max
(x,y,w)

{−x2 − y2 + 16x+ 5xy −K[w1(20− x) + 10w2 − y]}
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s.t. x− 20 ≤ 0

x+ y − 20 ≤ 0

y − 10 ≤ 0

w1 + w2 ≥ 1

x, y, w ≥ 0

Step 0: Choose K = 100 and λ = 50, w0 = (1, 0).

Step 1: Solve max
(x,y)∈Z

[−x2 − y2 + 16x + 5xy − 100(20 − x − y)], obtain the

solution (x0, y0) = (11.84, 8.86).

Step 2: Solve min
w∈W

[(w1 − 1)(20− x) + 10w2], obtain the solution w∗ = (1, 0)

and the optimal value is α100(w
0) = 0.

Step 3: As α100(w
0) = 0 and w0

1(20− x0) + 10w0
2 − y0 = 0, then the optimal

solution of the example is (x∗, y∗) = (x0, y0) = (11.14, 8.86)

The optimal solution from our method is the same as the result in the refer-
ence. It shows that the algorithm is feasible and efficient.

4. Conclusion

In this paper, a class of nonlinear bilevel programming problem is consid-
ered. By appending the duality gap of the lower level problem to the upper
level objective with a penalty, we obtain the penalized problem of the nonlinear
BLP problem. Through analyzing the characters of the penalized problem, we
decompose the nonlinear BLP problem into a series of nonlinear and linear pro-
gramming problems. Then we can obtain the optimal solution of the nonlinear
BLP problem by traditional optimization approaches.

It deserves pointing out that the optimal solution obtained depends on the
choice of the initial vector w0. If the initial vector w0 is chosen appropriately,
the global optimal solution can be obtained. Otherwise, we can only get the
local optimal solution. How to get the global optimal solution efficiently is our
next objective.

References

1. J.Bard. Some properties of the bilevel linear programming, Journal of optimization Theory
and Applications 32(1991), 146-164.

2. J.Bard. Practical Bilevel Optimization: Algorithm and Applications, Kluwer Academic
Publishers, Dordrecht, 1998.

3. O.Ben-Ayed, O.Blair. Computational difficulity of bilevel linear programming, Operations
Research 38(1990), 556-560.

4. B.Closon, P.Marcotte and G.Savard. A trust region method for nonlinear bilevel program-
ming: alogorithm and computational experience, Computational Optimization and Appli-
cations 30(3)(2005), 211-217.

5. S.Dempe. Foundation of bilevel programming, Kluwer Academic Publishers, London, 2002.



An exact penalty function method for solving a class of nonlinear bilevel programs 1539

6. P.Hansen, B.Jaumard, G.Savard. New branch-and-bound rules for linear bilevel program-
ming, SIAM Journal on Science and Statistical Computing 13(1992), 1194-1217.

7. Y.Ishizuka, E.Aiyoshi. Double penalty method for bilevel optimization problems, Annals of
Operations Research 34(1992), 73-88.

8. Y.Lv, T.Hu, et al. A penalty function method based on Kuhn-Tucker condition for solving
linear bilevel programming, Applied Mathematics and Computation 188(2007), 808-813.

9. C.Shi, G.Zhang, J.Lu. On the definition of linear bilevel programming solutin, Applied
Mathematics and Computation 160(2005), 169-173.

10. G.Savard, J.Gauvin. The steepest descent direction for the nonlinear bilevel programming
problem, Operations Research Letters 15(1994), 275-282.

11. G.M.Wang, X.J.Wang, et al. A globally convergent algorithm for a class of bilevel nonlinear
programming problem, Applied Mathematics and Computation 188(2007), 166-172.

12. W.Zhong, N.Xu. Boltzmann machine method of two level decision making, Journal of
Systems Engineering 10(1)(1995), 7-13.

Yibing Lv received M.Sc. and Ph.D from Wuhan University. Since 2008 he has been at
School of Information and Mathematics, Yangtze University. His research interests include
numerical optimization and intelligent computation.

School of Information and Mathematics, Yangtze University, Jingzhou 434023, China.
e-mail: lvyibing2001@gmail.com


