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A MULTIPLICITY RESULT FOR FOURTH-ORDER

BOUNDARY VALUE PROBLEMS VIA CRITICAL POINTS

THEOREM†

YU-MEI ZOU

Abstract. In this paper, using B.Ricceri’s three critical points theorem,
we prove the existence of at least three classical solutions for the problem

{
u(4)(t) = λf(t, u(t)), t ∈ (0, 1),

u(0) = u(1) = u′(0) = u′(1) = 0,

under appropriate hypotheses.
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1. Introduction

In this work, we study the boundary value problem{
u(4)(t) = λf(t, u(t)), t ∈ (0, 1),

u(0) = u(1) = u′(0) = u′(1) = 0,
(1)

where f : [a, b]×R → R is a continuous function and λ > 0. Since the problem
(1) cannot transform into a system of second-order equation, the treatment
method of second-order system does not apply to the problem (1). Thus, existing
literature on the problem (1) is limited. In 1984, Agarwal and chow [1] firstly
investigated the existence of the solutions of the problem (1) by contraction
mapping and iterative methods, subsequently, Ma and Wu [2], Ma and Tisdel
[3], Yao [4, 5] and Korman [6] studied the existence of positive solutions of this
problem by the Krasnosel’skii fixed point theorem on cones, Leray-Schauder
fixed point theorem and techniques of bifurcation theory.
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Recently, many papers have appeared in which the technical approach adopted
is based on the three critical point theorem obtained by Ricceri [7]. We cite pa-
pers [8, 9, 10], where the authors, by using Ricceri’s three critical point theorem,
established the existence of at least three weak solutions to the Dirichlet bound-
ary value problem.

In [8], Bonanno used the three-critical-points theorem to obtain three solu-
tions of the two-point boundary value problem{

u′′ + λf(u) = 0,

u(0) = u(1) = 0,

where λ is a positive parameter and f : R → R is a continuous function.
In [9], Candito extended the main result of [8] to the nonautonomous case{

u′′ + λf(t, u) = 0,

u(0) = u(1) = 0,

where λ is a parameter and f : [a, b]×R → R is a continuous function.
In [10], Ricceri’s three critical point theorem has been successfully used to ob-

tain multiple solutions for p-Laplacian type equations under Dirichlet boundary
conditions. In [10], He and Ge extended the main results of [8, 9] to quasilinear
differential equations, i.e.{

(|u′|p−2u′)′ + λf(t, u) = 0

u(a) = u(b) = 0,

In this paper, we prove the existence of three solutions of problem (1). The
technical approach is based on the three critical point theorem obtained by
Ricceri [7] too. Our Theorem 1 under novel assumptions ensures the existence
of an open interval Λ ⊂ [0,+∞) and a positive real number q, such that, for
each λ ∈ Λ, problem (1) admits at least three classical solutions whose norms in
H2

0 are less than q. The aim of the present paper is to extended the main results
of [8, 9, 10] to problem (1).

We recall here for the reader’s convenience the three critical points Theorem
of [7] and Proposition 3.1 of [11].

Theorem A. Let X be a separable and reflexive real Banach space; Φ : X → R
a continuously Gâteaux differentiable and sequentially weakly lower semicontin-
uous functional whose Gâteaux derivative admits a continuous inverse on X∗;
Ψ : X → R a continuously Gâteaux differentiable functional whose Gâteaux
derivative is compact. Assume that

lim
‖u‖→+∞

(Φ(u) + λΨ(u)) = +∞

for all λ ∈ [0,+∞), and that there exists a continuous concave function h :
[0,+∞) → R such that

sup
λ≥0

inf
u∈X

(Φ(u) + λΨ(u) + h(λ)) < inf
u∈X

sup
λ≥0

(Φ(u) + λΨ(u) + h(λ))
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Then, there exist an open interval Λ ⊂ [0,+∞) and a positive real number q
such that, for each λ ∈ Λ, the equation

Φ′(u) + λΨ′(u) = 0,

has at least three solutions in X whose norms are less than q.

Proposition B. Let X be a non-empty set and Φ, J two real functions on X.
Assume that there are r > 0 and x0, x1 ∈ X such that

Φ(x0) = J(x0) = 0, Φ(x1) > r,

sup
x∈Φ−1((∞,r])

J(x) < r
J(x1)

Φ(x1)
.

Then, for each ρ satisfying

sup
x∈Φ−1((∞,r])

J(x) < ρ < r
J(x1)

Φ(x1)
,

one has

sup
λ≥0

inf
u∈X

(Φ(u) + λ(ρ− J(x))) < inf
u∈X

sup
λ≥0

(Φ(u) + λ(ρ− J(x)))

2. Main results

Here and in the sequel, X will denote the Sobolev space H2
0 . The norm of

H2
0 is denoted by ‖ · ‖:

‖u‖ = {
∫ 1

0

|u′′
(s)|2ds} 1

2 ,

and H2
0 is the completion of C∞

0 (0, 1) with respect to this norm.
Let k > 2 be a positive constant, and define the real function g(t, ξ) by

g(t, ξ) =

∫ ξ

0

f(t, u)du, for all (t, ξ) ∈ [0, 1]×R.

Our main results fully depend on the following Lemma 1.

Lemma 1. Assume that there exist two positive constants d, c, with c < 4kd
√
2k

π ,
such that

(i) g(t, ξ) ≥ 0 for each (t, ξ) ∈ [0, 1
k ] ∪ [1− 1

k , 1]× [0, d],

(ii) max
(t,ξ)∈[0,1]×[−c,c]

g(t, ξ) < c2π2

32k3d2

∫ 1− 1
k

1
k

g(t, d)dt.

Then there exist r > 0 and u ∈ X such that

2r < ‖u‖2
and

max
(t,ξ)∈[0,1]×[−c,c]

g(t, ξ) ≤ 2r

∫ 1

0

g(t, u(t))dt

‖u‖2
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Proof. We define the function

u(t) =





2k2dt2, 0 ≤ t ≤ 1

2k
,

−2k2d(t− 1

k
)2 + d,

1

2k
≤ t ≤ 1

k
,

d,
1

k
≤ t ≤ 1− 1

k
,

−2k2d(t− 1 +
1

k
)2 + d, 1− 1

k
≤ t ≤ 1− 1

2k
,

2k2d(t− 1)2, 1− 1

2k
≤ t ≤ 1,

and 2r = π2c2. It is clear that u ∈ H2
0 and ‖u‖2 = 32k3d2. Hence, taking into

account that c < 4kd
√
2k

π , one has

2r = π2c2 < 32k3d3 = ‖u‖2.
Moreover, owing to our assumptions, we have

∫ 1

0

g(t, u(t))dt

‖u‖2 2r ≥

∫ 1− 1
k

1
k

g(t, u(t))dt

32k3d2
2

(
c2π2

2

)

=
c2π2

32k3d2

∫ 1− 1
k

1
k

g(t, d)dt > max
(t,ξ)∈[0,1]×[−c,c]

g(t, ξ)

i.e.,

max
(t,ξ)∈[0,1]×[−c,c]

g(t, ξ) ≤ 2r

∫ 1

0

g(t, u(t))dt

‖u‖2 .

Then the proof is completed. ¤

Our main result is the following theorem.

Theorem 1. Suppose that there exist four positive constants c, d, µ, s with s < 2

and with c < 4kd
√
2k

π , such that
(i) conditions (i) and (ii) in Lemma 1 hold,
(ii) g(t, ξ) ≤ µ(1 + |ξ|s) for each t ∈ [0, 1] and ξ ∈ R.

Then there exist an open interval Λ ⊂ [0,+∞) and a positive real number q,
such that, for each λ ∈ Λ, problem (1) admits at least three classical solutions
belonging to C2[0, 1] whose norms in H2

0 are less than q.

Proof. For each u ∈ X, we define

Φ(u) =
1

2
‖u‖2, Ψ(u) = −

∫ 1

0

(∫ u(t)

0

f(t, x)dx

)
dt, J(u) = Φ(u) + λΨ(u).
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It is well known that the critical points of J are the classical solutions of (6). So,
our end is to verify that Φ and Ψ satisfy the assumptions of TheoremA. It is easy
to see that Φ is a continuously Gâteaux differentiable and sequentially weakly
lower semicontinuous functional whose Gâteaux derivative admits a continuous
inverse on X∗, and Ψ is a continuous Gâteaux differentiable functional whose
Gâteaux derivative is compact.

Moreover, thanks to (ii) and to Poincaré inequality, one has

lim
‖u‖→+∞

Φ(u) + λΨ(u) = +∞,

for all λ ∈ (0,+∞).
Now, taking into account that

max
t∈[0,1]

|u(t)| ≤ 1

π
‖u‖.

It follows that

Φ−1((−∞, r]) ⊂
{
u ∈ X : |u(t)| ≤

√
2r

π

}
,

for each r > 0.
On the other hand, we have

sup
x∈Φ−1((∞,r])

−Ψ(u) = sup
‖u‖2≤2r

∫ 1

0

g(t, u(t))dt ≤ max
(t,ξ)∈[0,1]×[−c,c]

g(t, ξ).

Now, owing to Lemma 1, there exists r > 0 and u ∈ X such that

max
(t,ξ)∈[0,1]×[−c,c]

g(t, ξ) < 2r

∫ 1

0
g(t, u(t))dt

‖u‖2 = r
(−Ψ(u))

Φ(u)

So, there exists ρ > 0, such that

sup
x∈Φ−1((∞,r])

−Ψ(u) < ρ < r
(−Ψ(u))

Φ(u)
.

Finally, owing to Proposition B, choosing h(λ) = ρλ for λ ≥ 0, then we obtain

sup
λ≥0

inf
u∈X

(Φ(u) + λΨ(u) + h(λ)) < inf
u∈X

sup
λ≥0

(Φ(u) + λΨ(u) + h(λ))

Hence, by an application of Theorem A, we complete the proof. ¤

Now, our conclusion follows from Theorem 1.
Let l ∈ C[0, 1] and h ∈ C(R) be two nonnegative functions. Put

L(t) =

∫ t

0

l(τ)dτ, H(ξ) =

∫ ξ

0

h(τ)dτ.

We consider the special case of problem{
u(4)(t) + λl(t)h(u) = 0,

u(0) = u(1) = u′(0) = u′(1) = 0,
(2)
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Corollary 1. Suppose that there exist four positive constants c, d, σ, s with s < 2

and with c < 4kd
√
2k

π , such that

(i) max
t∈[0,1]

l(t) < c2π2

32k3d2

H(d)
H(c) [L(1− 1

k )− L( 1k )],

(ii)H(ξ) ≤ σ(1 + |ξ|s) for each t ∈ [0, 1] and ξ ∈ R.
Then there exist an open interval Λ ⊂ [0,+∞) and a positive real number q,
such that, for each λ ∈ Λ, problem (2) admits at least three classical solutions
belonging to C2[0, 1] whose norms in H2

0 are less than q.

Proof. Let
f(t, u) = l(t)h(u), for each (t, u) ∈ [0, 1]×R,

and we have

max
(t,ξ)∈[0,1]×[−c,c]

g(t, ξ) = max
(t,ξ)∈[0,1]×[−c,c]

∫ ξ

0

f(t, x)dx = max
t∈[0,1]

l(t)H(c).

Taking µ = σ max
t∈[0,1]

l(t), it is easy to verify that all the assumptions of Theorem

1 are satisfied. So the proof is finished. ¤
Finally, we give an example to illustrate our main result.

Example 1. We consider (2) with f(t, u) = t · h(u), where

h(u) =

{
e−uu12(13− u), u ∈ [0, 13],

0, u > 13.

In this case, one has L(t) = t2

2 , and

H(ξ) =

{
e−uu13, u ∈ [0, 13],

(13e)−13, u > 13.

It is easy to verify that with c = 1
2 , d = 2, k = 8, s = 1, σ = (13e)−13, all

conditions of Corollary 1 are satisfied. Therefore there exist an open interval
Λ ⊂ [0,+∞) and a positive real number q, such that, for each λ ∈ Λ, problem
(2) admits at least three classical solutions belonging to C2[0, 1] whose norms in
H2

0 are less than q.
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