A MULTIPLICITY RESULT FOR FOURTH-ORDER BOUNDARY VALUE PROBLEMS VIA CRITICAL POINTS THEOREM ${ }^{\dagger}$

YU-MEI ZOU

AbStract. In this paper, using B.Ricceri's three critical points theorem, we prove the existence of at least three classical solutions for the problem

$$
\left\{\begin{array}{l}
u^{(4)}(t)=\lambda f(t, u(t)), \quad t \in(0,1) \\
u(0)=u(1)=u^{\prime}(0)=u^{\prime}(1)=0
\end{array}\right.
$$

under appropriate hypotheses.
AMS Mathematics Subject Classification: 34B15.
Key words and phrases : Singular boundary value problem, Positive solution, Variational method.

1. Introduction

In this work, we study the boundary value problem

$$
\left\{\begin{array}{l}
u^{(4)}(t)=\lambda f(t, u(t)), \quad t \in(0,1) \tag{1}\\
u(0)=u(1)=u^{\prime}(0)=u^{\prime}(1)=0
\end{array}\right.
$$

where $f:[a, b] \times R \rightarrow R$ is a continuous function and $\lambda>0$. Since the problem (1) cannot transform into a system of second-order equation, the treatment method of second-order system does not apply to the problem (1). Thus, existing literature on the problem (1) is limited. In 1984, Agarwal and chow [1] firstly investigated the existence of the solutions of the problem (1) by contraction mapping and iterative methods, subsequently, Ma and Wu [2], Ma and Tisdel [3], Yao $[4,5]$ and Korman [6] studied the existence of positive solutions of this problem by the Krasnosel'skii fixed point theorem on cones, Leray-Schauder fixed point theorem and techniques of bifurcation theory.

[^0]Recently, many papers have appeared in which the technical approach adopted is based on the three critical point theorem obtained by Ricceri [7]. We cite papers $[8,9,10]$, where the authors, by using Ricceri's three critical point theorem, established the existence of at least three weak solutions to the Dirichlet boundary value problem.

In [8], Bonanno used the three-critical-points theorem to obtain three solutions of the two-point boundary value problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}+\lambda f(u)=0 \\
u(0)=u(1)=0
\end{array}\right.
$$

where λ is a positive parameter and $f: R \rightarrow R$ is a continuous function.
In [9], Candito extended the main result of [8] to the nonautonomous case

$$
\left\{\begin{array}{l}
u^{\prime \prime}+\lambda f(t, u)=0 \\
u(0)=u(1)=0
\end{array}\right.
$$

where λ is a parameter and $f:[a, b] \times R \rightarrow R$ is a continuous function.
In [10], Ricceri's three critical point theorem has been successfully used to obtain multiple solutions for p-Laplacian type equations under Dirichlet boundary conditions. In [10], He and Ge extended the main results of [8, 9] to quasilinear differential equations, i.e.

$$
\left\{\begin{array}{l}
\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}+\lambda f(t, u)=0 \\
u(a)=u(b)=0
\end{array}\right.
$$

In this paper, we prove the existence of three solutions of problem (1). The technical approach is based on the three critical point theorem obtained by Ricceri [7] too. Our Theorem 1 under novel assumptions ensures the existence of an open interval $\Lambda \subset[0,+\infty)$ and a positive real number q, such that, for each $\lambda \in \Lambda$, problem (1) admits at least three classical solutions whose norms in H_{0}^{2} are less than q. The aim of the present paper is to extended the main results of $[8,9,10]$ to problem (1).

We recall here for the reader's convenience the three critical points Theorem of [7] and Proposition 3.1 of [11].
Theorem A. Let X be a separable and reflexive real Banach space; $\Phi: X \rightarrow R$ a continuously Gâteaux differentiable and sequentially weakly lower semicontinuous functional whose Gâteaux derivative admits a continuous inverse on X^{*}; $\Psi: X \rightarrow R$ a continuously Gâteaux differentiable functional whose Gâteaux derivative is compact. Assume that

$$
\lim _{\|u\|+\infty}(\Phi(u)+\lambda \Psi(u))=+\infty
$$

for all $\lambda \in[0,+\infty)$, and that there exists a continuous concave function h : $[0,+\infty) \rightarrow R$ such that

$$
\sup _{\lambda \geq 0} \inf _{u \in X}(\Phi(u)+\lambda \Psi(u)+h(\lambda))<\inf _{u \in X} \sup _{\lambda \geq 0}(\Phi(u)+\lambda \Psi(u)+h(\lambda))
$$

Then, there exist an open interval $\Lambda \subset[0,+\infty)$ and a positive real number q such that, for each $\lambda \in \Lambda$, the equation

$$
\Phi^{\prime}(u)+\lambda \Psi^{\prime}(u)=0,
$$

has at least three solutions in X whose norms are less than q.
Proposition B. Let X be a non-empty set and Φ, J two real functions on X. Assume that there are $r>0$ and $x_{0}, x_{1} \in X$ such that

$$
\begin{gathered}
\Phi\left(x_{0}\right)=J\left(x_{0}\right)=0, \quad \Phi\left(x_{1}\right)>r, \\
\sup _{x \in \Phi^{-1}((\infty, r])} J(x)<r \frac{J\left(x_{1}\right)}{\Phi\left(x_{1}\right)} .
\end{gathered}
$$

Then, for each ρ satisfying

$$
\sup _{x \in \Phi^{-1}((\infty, r])} J(x)<\rho<r \frac{J\left(x_{1}\right)}{\Phi\left(x_{1}\right)},
$$

one has

$$
\sup _{\lambda \geq 0} \inf _{u \in X}(\Phi(u)+\lambda(\rho-J(x)))<\inf _{u \in X} \sup _{\lambda \geq 0}(\Phi(u)+\lambda(\rho-J(x)))
$$

2. Main results

Here and in the sequel, X will denote the Sobolev space H_{0}^{2}. The norm of H_{0}^{2} is denoted by $\|\cdot\|$:

$$
\|u\|=\left\{\int_{0}^{1}\left|u^{\prime \prime}(s)\right|^{2} \mathrm{~d} s\right\}^{\frac{1}{2}}
$$

and H_{0}^{2} is the completion of $C_{0}^{\infty}(0,1)$ with respect to this norm.
Let $k>2$ be a positive constant, and define the real function $g(t, \xi)$ by

$$
g(t, \xi)=\int_{0}^{\xi} f(t, u) d u, \text { for all }(t, \xi) \in[0,1] \times R
$$

Our main results fully depend on the following Lemma 1.
Lemma 1. Assume that there exist two positive constants d, c, with $c<\frac{4 k d \sqrt{2 k}}{\pi}$, such that
(i) $g(t, \xi) \geq 0$ for each $(t, \xi) \in\left[0, \frac{1}{k}\right] \cup\left[1-\frac{1}{k}, 1\right] \times[0, d]$,
(ii) $\max _{(t, \xi) \in[0,1] \times[-c, c]} g(t, \xi)<\frac{c^{2} \pi^{2}}{32 k^{3} d^{2}} \int_{\frac{1}{k}}^{1-\frac{1}{k}} g(t, d) d t$.

Then there exist $r>0$ and $u \in X$ such that

$$
2 r<\|u\|^{2}
$$

and

$$
\max _{(t, \xi) \in[0,1] \times[-c, c]} g(t, \xi) \leq 2 r \frac{\int_{0}^{1} g(t, u(t)) d t}{\|u\|^{2}}
$$

Proof. We define the function

$$
u(t)= \begin{cases}2 k^{2} d t^{2}, & 0 \leq t \leq \frac{1}{2 k} \\ -2 k^{2} d\left(t-\frac{1}{k}\right)^{2}+d, & \frac{1}{2 k} \leq t \leq \frac{1}{k} \\ d, & \frac{1}{k} \leq t \leq 1-\frac{1}{k} \\ -2 k^{2} d\left(t-1+\frac{1}{k}\right)^{2}+d, & 1-\frac{1}{k} \leq t \leq 1-\frac{1}{2 k} \\ 2 k^{2} d(t-1)^{2}, & 1-\frac{1}{2 k} \leq t \leq 1\end{cases}
$$

and $2 r=\pi^{2} c^{2}$. It is clear that $u \in H_{0}^{2}$ and $\|u\|^{2}=32 k^{3} d^{2}$. Hence, taking into account that $c<\frac{4 k d \sqrt{2 k}}{\pi}$, one has

$$
2 r=\pi^{2} c^{2}<32 k^{3} d^{3}=\|u\|^{2} .
$$

Moreover, owing to our assumptions, we have

$$
\begin{aligned}
\frac{\int_{0}^{1} g(t, u(t)) d t}{\|u\|^{2}} 2 r & \geq \frac{\int_{\frac{1}{k}}^{1-\frac{1}{k}} g(t, u(t)) d t}{32 k^{3} d^{2}} 2\left(\frac{c^{2} \pi^{2}}{2}\right) \\
& =\frac{c^{2} \pi^{2}}{32 k^{3} d^{2}} \int_{\frac{1}{k}}^{1-\frac{1}{k}} g(t, d) d t>\max _{(t, \xi) \in[0,1] \times[-c, c]} g(t, \xi)
\end{aligned}
$$

i.e.,

$$
\max _{(t, \xi) \in[0,1] \times[-c, c]} g(t, \xi) \leq 2 r \frac{\int_{0}^{1} g(t, u(t)) d t}{\|u\|^{2}}
$$

Then the proof is completed.
Our main result is the following theorem.
Theorem 1. Suppose that there exist four positive constants c, d, μ, s with $s<2$ and with $c<\frac{4 k d \sqrt{2 k}}{\pi}$, such that
(i) conditions (i) and (ii) in Lemma 1 hold,
(ii) $g(t, \xi) \leq \mu\left(1+|\xi|^{s}\right)$ for each $t \in[0,1]$ and $\xi \in R$.

Then there exist an open interval $\Lambda \subset[0,+\infty)$ and a positive real number q, such that, for each $\lambda \in \Lambda$, problem (1) admits at least three classical solutions belonging to $C^{2}[0,1]$ whose norms in H_{0}^{2} are less than q.

Proof. For each $u \in X$, we define

$$
\Phi(u)=\frac{1}{2}\|u\|^{2}, \quad \Psi(u)=-\int_{0}^{1}\left(\int_{0}^{u(t)} f(t, x) d x\right) d t, \quad J(u)=\Phi(u)+\lambda \Psi(u)
$$

It is well known that the critical points of J are the classical solutions of (6). So, our end is to verify that Φ and Ψ satisfy the assumptions of Theorem \mathbf{A}. It is easy to see that Φ is a continuously Gâteaux differentiable and sequentially weakly lower semicontinuous functional whose Gâteaux derivative admits a continuous inverse on X^{*}, and Ψ is a continuous Gâteaux differentiable functional whose Gâteaux derivative is compact.

Moreover, thanks to (ii) and to Poincaré inequality, one has

$$
\lim _{\|u\| \rightarrow+\infty} \Phi(u)+\lambda \Psi(u)=+\infty
$$

for all $\lambda \in(0,+\infty)$.
Now, taking into account that

$$
\max _{t \in[0,1]}|u(t)| \leq \frac{1}{\pi}\|u\| .
$$

It follows that

$$
\Phi^{-1}((-\infty, r]) \subset\left\{u \in X:|u(t)| \leq \frac{\sqrt{2 r}}{\pi}\right\}
$$

for each $r>0$.
On the other hand, we have

$$
\sup _{x \in \Phi^{-1}((\infty, r])}-\Psi(u)=\sup _{\|u\|^{2} \leq 2 r} \int_{0}^{1} g(t, u(t)) d t \leq \max _{(t, \xi) \in[0,1] \times[-c, c]} g(t, \xi) .
$$

Now, owing to Lemma 1, there exists $r>0$ and $u \in X$ such that

$$
\max _{(t, \xi) \in[0,1] \times[-c, c]} g(t, \xi)<2 r \frac{\int_{0}^{1} g(t, u(t)) d t}{\|u\|^{2}}=r \frac{(-\Psi(u))}{\Phi(u)}
$$

So, there exists $\rho>0$, such that

$$
\sup _{x \in \Phi^{-1}((\infty, r])}-\Psi(u)<\rho<r \frac{(-\Psi(u))}{\Phi(u)}
$$

Finally, owing to Proposition B, choosing $h(\lambda)=\rho \lambda$ for $\lambda \geq 0$, then we obtain

$$
\sup _{\lambda \geq 0} \inf _{u \in X}(\Phi(u)+\lambda \Psi(u)+h(\lambda))<\inf _{u \in X} \sup _{\lambda \geq 0}(\Phi(u)+\lambda \Psi(u)+h(\lambda))
$$

Hence, by an application of Theorem A, we complete the proof.
Now, our conclusion follows from Theorem 1.
Let $l \in C[0,1]$ and $h \in C(R)$ be two nonnegative functions. Put

$$
L(t)=\int_{0}^{t} l(\tau) d \tau, \quad H(\xi)=\int_{0}^{\xi} h(\tau) d \tau
$$

We consider the special case of problem

$$
\left\{\begin{array}{l}
u^{(4)}(t)+\lambda l(t) h(u)=0 \tag{2}\\
u(0)=u(1)=u^{\prime}(0)=u^{\prime}(1)=0
\end{array}\right.
$$

Corollary 1. Suppose that there exist four positive constants c, d, σ, s with $s<2$ and with $c<\frac{4 k d \sqrt{2 k}}{\pi}$, such that
(i) $\max _{t \in[0,1]} l(t)<\frac{c^{2} \pi^{2}}{32 k^{3} d^{2}} \frac{H(d)}{H(c)}\left[L\left(1-\frac{1}{k}\right)-L\left(\frac{1}{k}\right)\right]$,
(ii) $H(\xi) \leq \sigma\left(1+|\xi|^{s}\right)$ for each $t \in[0,1]$ and $\xi \in R$.

Then there exist an open interval $\Lambda \subset[0,+\infty)$ and a positive real number q, such that, for each $\lambda \in \Lambda$, problem (2) admits at least three classical solutions belonging to $C^{2}[0,1]$ whose norms in H_{0}^{2} are less than q.

Proof. Let

$$
f(t, u)=l(t) h(u), \text { for each }(t, u) \in[0,1] \times R
$$

and we have

$$
\max _{(t, \xi) \in[0,1] \times[-c, c]} g(t, \xi)=\max _{(t, \xi) \in[0,1] \times[-c, c]} \int_{0}^{\xi} f(t, x) d x=\max _{t \in[0,1]} l(t) H(c) .
$$

Taking $\mu=\sigma \max _{t \in[0,1]} l(t)$, it is easy to verify that all the assumptions of Theorem 1 are satisfied. So the proof is finished.

Finally, we give an example to illustrate our main result.
Example 1. We consider (2) with $f(t, u)=t \cdot h(u)$, where

$$
h(u)= \begin{cases}e^{-u} u^{12}(13-u), & u \in[0,13] \\ 0, & u>13\end{cases}
$$

In this case, one has $L(t)=\frac{t^{2}}{2}$, and

$$
H(\xi)= \begin{cases}e^{-u} u^{13}, & u \in[0,13] \\ (13 e)^{-13}, & u>13\end{cases}
$$

It is easy to verify that with $c=\frac{1}{2}, d=2, k=8, s=1, \sigma=(13 e)^{-13}$, all conditions of Corollary 1 are satisfied. Therefore there exist an open interval $\Lambda \subset[0,+\infty)$ and a positive real number q, such that, for each $\lambda \in \Lambda$, problem (2) admits at least three classical solutions belonging to $C^{2}[0,1]$ whose norms in H_{0}^{2} are less than q.

References

1. R.P.Agarwal and Y.M.Chow, Iterative methods for a fourth order boundary value problem, Journal of Computational and Applied Mathematics, 10(2)(1984):203-217.
2. R. Ma and H. Wu, Positive solutions of a fourth-order two-point boundary value problem, Acta Math. Sci. Ser. , A 22(2)(2002):244-249
3. R. Ma and C. C. Tisdel, Positive solutions of singular sublinear fourth-order boundary value problem, Appl. Anal., 84(2005):1199-1221.
4. Q. Yao, Solvability of an elastic beam equation with Caratheodory function, Mathematica Applicata, 17(3)(2004):389-392.
5. Q. Yao, Positive solutions for eigenvalue problems of fourth-order elastic beam equations, Appl. Math. Lett, 17(2) (2004):237-243.
6. P. Korman, Uniqueness and exact multiplicity of solutions for a class of fourth-order semilinear problems, Proc. Roy. Soc. Edinburgh Sect. A, 134(1)(2004):179-190.
7. B. Ricceri, On a three critical points theorem, Arch. Math. 75(2000):220-226.
8. G. Bonanno, Existence of three solutions for a two point boundary value problem, Appl. Math. Lett. 13(2000):53-57.
9. P. Candito, Existence of three solutions for a nonautonomous two point boundary value problem, J. Math. Anal. Appl.252(2000):532-537.
10. X.M. He,W.G. Ge,Existence of three solutions for a quasilinear two-point boundary value problem, Comput. Math. Appl. 45(2003):765-769.
11. B. Ricceri, Existence of three solutions for a class of elliptic eigenvalue problems, Math. Comput. Modell. 32(2000):1485-1494.

YU-MEI ZOU received M.Sc. from Shandong University of Science and Technology. She is currently a associate professor at Shandong University of Science and Technology since 1993. Her research interests focus on the boundary value problems of nonlinear ordinary diffrential equations.

Department of Statistics and Finance, College of Information Science and Engineering, Shandong University of Science and Technology, Qingdao, 266510, People's Republic of China.
e-mail: sdzouym@126.com

[^0]: Received November 13, 2010. Revised January 11, 2011. Accepted January 17, 2011.
 ${ }^{\dagger}$ The Project Supported by the National Science Foundation of P.R.China(10971179) and Research Award Fund for Outstanding Young Scientists of Shandong Province(BS2010SF023).
 (c) 2011 Korean SIGCAM and KSCAM.

