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OSCILLATION THEOREMS FOR CERTAIN SECOND ORDER

NONLINEAR DIFFERENTIAL EQUATIONS†

YIBING SUN, ZHENLAI HAN∗, PING ZHAO, YING SUN

Abstract. In this paper, we consider the oscillation of the following cer-
tain second order nonlinear differential equations

(
r(t)(x′(t))α

)′
+ q(t)xβ(t) = 0,

where α and β are ratios of positive odd integers. New oscillation theorems
are established, which are based on a class of new functions Φ = Φ(t, s, l)
defined in the sequel. Also, we establish some interval oscillation criteria
for this equation.
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1. Introduction

In this paper, we are concerned with oscillation theorems for the following
certain second order nonlinear differential equations

(r(t)(x′(t))α)′ + q(t)xβ(t) = 0, (1)

where α and β are ratios of positive odd integers, q ∈ C([t0,∞), R), q(t) ≥ 0.
We assume that r ∈ C1([t0,∞), R), r(t) > 0 and r′(t) ≥ 0. We shall consider
the two cases ∫ ∞

t0

r−
1
α (t)dt < ∞, (2)

∫ ∞

t0

r−
1
α (t)dt = ∞. (3)
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By a solution of Eq. (1), we mean a function x ∈ C1([tx,∞), R), tx ≥ t0,
which has the property r(t)(x′(t))α ∈ C1([tx,∞), R) and satisfies Eq. (1) on
[tx,∞). A nontrivial solution of Eq. (1) is said to be oscillatory if it is neither
eventually positive nor eventually negative, otherwise it is nonoscillatory. Eq.
(1) is said to be oscillatory if all its solutions are oscillatory.

In the last decades, there has been an increasing interest in obtaining sufficient
conditions for the oscillation and nonoscillation of solutions for different classes
of second order differential equations, see [1–10]. Furthermore, there has been a
great deal of works on the interval oscillation criteria for second order differential
equations, and we refer the readers to the articles [11–16].

Elbert [1, 2], Kusano et al. [4–6], Mirzov [8, 9] have obtained some similar
properties of second order differential equations

(r(t)x′(t))′ + q0(t)x(t) = 0, (4)

under the assumption ∫ ∞

t0

1

r(t)
dt = ∞.

Long and Wang [12] studied the oscillation of second-order nonlinear differential
equations

(r(t)y′(t))′ +Q(t, y(t), y′(t)) = 0, (5)

where 1/r ∈ Lloc([t0,∞), R), the set of real-valued, locally integrable functions
on [t0,∞), and r(t) > 0 a.e. on [t0,∞), and established new Kamenev-type
criteria and interval criteria for oscillation of Eq. (5).

Clearly, (4) and (5) are different from (1). The problem of studying the
oscillation and nonoscillation of all solutions of second order linear equations,
e.g., Eq. (4), i.e., Eq. (1) with α = β = 1, nonlinear equations, e.g., Eq. (1)
with α = 1 and β 6= 1, half-linear equations (4), e.g., Eq. (1) with α = β has
been a very active area of research in the last few years.

In this paper, we consider the second order nonlinear equation (1) with α =
β and α 6= β. To the best of our knowledge nothing is known regarding the
oscillation of Eq. (1) with α 6= β.

The paper is organized as follows: In the next section, we present some def-
initions which will be used in the following results. In Section 3, by developing
Riccati transformations technique and inequalities some sufficient conditions of
new Kamenev-type criteria for oscillation of Eq. (1) are established, which are
based on a class of new functions Φ = Φ(t, s, l) defined in the sequel. In Section
4, we established interval criteria for oscillation of Eq. (1). In Section 5, we give
two examples to illustrate Theorem 3.2 and Corollary 4.1, respectively.

2. Preliminaries

In this section, in order to prove our main results, we need the following
definitions.
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We say that a function H = H(t, s) belongs to the function class Y, denoted
by H ∈ Y, if H ∈ C(D,R+), where D = {(t, s) : t0 ≤ s ≤ t < ∞}, which satisfies
H(t, t) = 0, H(t, s) > 0 for t > s, and has partial derivative ∂H/∂s and ∂H/∂t
on D such that

∂H

∂t
= h1(t, s)

√
H(t, s),

∂H

∂s
= −h2(t, s)

√
H(t, s), (6)

where h1(t, s), h2(t, s) are locally integrable with respect to t and s, respectively,
in D.

We will use the function classes X and Y to study the oscillation criteria for
Eq. (1). We say that a function Φ = Φ(t, s, l) belongs to the function class X,
denoted by Φ ∈ X, if Φ ∈ C(E,R), where E = {(t, s, l) : t0 ≤ l ≤ s ≤ t < ∞},
which satisfies Φ(t, t, l) = 0, Φ(t, l, l) = 0, Φ(t, s, l) > 0, l < s < t, and has the
partial derivative ∂Φ/∂s on E such that ∂Φ/∂s is locally integrable with respect
to s in E.

Definition 2.1. The operator F [·; l, t] is given by

F [g; l, t] =

∫ t

l

Φn(t, s, l)g(s)ds, t ≥ s ≥ l ≥ t0, g ∈ C([t0,∞), R), (7)

where n is a positive integer.

Definition 2.2. The function φ = φ(t, s, l) is given by

∂Φ(t, s, l)

∂s
= φ(t, s, l)Φ(t, s, l). (8)

It is easy to see that F [·; l, t] is a linear operator and satisfies

F [g′; l, t] = −nF [gφ; l, t], g ∈ C1([t0,∞), R). (9)

3. Kamenev-type oscillation criteria

In this section, we will establish some new Kamenev-type criteria for oscilla-
tion of Eq. (1).

It will be convenient to make the following notations:

d+(t) = max{0, d(t)}, d−(t) = max{0,−d(t)},

η(t) =

(∫ t

t1

r−
1
α (s)ds

)−1

, ξ(t) =

∫ ∞

t

r−
1
α (s)ds.

where t1 is sufficiently large with t1 ≥ t0.

Theorem 3.1. Assume that (3) holds. If there exist functions Φ ∈ X and
ψ ∈ C1([t0,∞), R+) such that

lim sup
t→∞

F

[
ψqδ1 − ψr

(α+ 1)α+1

(
nφ+

ψ′
+

ψ

)α+1

; l, t

]
> 0, (10)
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where the operator F is defined by (7), the function φ = φ(t, s, l) is defined by
(8), and

δ1(s) =





m1, m1 is any positive constant, if β > α,

1, if β = α,

m2η
α−β(s), m2 is any positive constant, if β < α,

then every solution of Eq. (1) is oscillatory.

Proof. Suppose to the contrary that x is a nonoscillatory solution of Eq. (1).
We may assume without loss of generality that there exists a number t1 ≥ t0,
such that x(t) > 0, for all t ≥ t1. Then by Eq. (1) we have (r(t)(x′(t))α)′ =
−q(t)xβ(t) ≤ 0, t ≥ t1, which implies that r(t)(x′(t))α is decreasing, and it is
eventually of one sign. So x′(t) is eventually of one sign. We claim that x′(t) >
0, t ≥ t1. Otherwise, if there exists a t2 ≥ t1 such that r(t2)(x

′(t2))α = a < 0,
then for all t ≥ t2, we have

r(t)(x′(t))α ≤ r(t2)(x
′(t2))α = a,

which implies that

x′(t) ≤ −(−a)
1
α

(
1

r(t)

) 1
α

, t ≥ t2.

Integrating the above inequality from t2 to t, and letting t → ∞, we get

x(t) ≤ x(t2)− (−a)
1
α

∫ t

t2

(
1

r(s)

) 1
α

ds → −∞,

which gives a contradiction with x(t) > 0. Hence x′(t) > 0, t ≥ t2. Define the
function ω by

ω(s) = ψ(s)r(s)

(
x′(s)
x(s)

)α

, s ≥ t1. (11)

Then ω(s) > 0 for s ≥ t1. Differentiating (11) and using (1), we obtain

ω′(s) =
ψ′(s)
ψ(s)

ω(s) + ψ(s)

(
(r(s)(x′(s))α)′

xα(s)
− αr(s)

(
x′(s)
x(s)

)α+1
)

=
ψ′(s)
ψ(s)

ω(s)− ψ(s)q(s)xβ−α(s)− α
ω

α+1
α (s)

(ψ(s)r(s))
1
α

≤ ψ′
+(s)

ψ(s)
ω(s)− ψ(s)q(s)xβ−α(s)− α

ω
α+1
α (s)

(ψ(s)r(s))
1
α

for all s ≥ t1. It follows that

0 ≤ −ω′(s) +
ψ′
+(s)

ψ(s)
ω(s)− ψ(s)q(s)xβ−α(s)− α

ω
α+1
α (s)

(ψ(s)r(s))
1
α

. (12)
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Applying F [·; t1, t](t > t1) to (12) and using (9), we have

0 ≤ −F [ω′; t1, t] + F [
ψ′
+

ψ
ω; t1, t]− F [ψqxβ−α; t1, t]− F

[
α
ω

α+1
α

(ψr)
1
α

; t1, t

]

= F

[(
nφ+

ψ′
+

ψ

)
ω; t1, t

]
− F [ψqxβ−α; t1, t]− F

[
α
ω

α+1
α

(ψr)
1
α

; t1, t

]

= F

[(
nφ+

ψ′
+

ψ

)
ω − α

ω
α+1
α

(ψr)
1
α

; t1, t

]
− F [ψqxβ−α; t1, t]. (13)

Set

G(v) =

(
nφ+

ψ′
+(s)

ψ(s)

)
v − α

v
α+1
α

(ψ(s)r(s))
1
α

, v > 0.

By simple calculate, when v = ψ(s)r(s)(nφ+ ψ′
+(s)/ψ(s))

α/(α+ 1)α, we have

G(v) = Gmax =
ψ(s)r(s)

(α+ 1)α+1

(
nφ+

ψ′
+(s)

ψ(s)

)α+1

. (14)

From (13) and (14), we obtain

0 ≤ F

[
ψr

(α+ 1)α+1

(
nφ+

ψ′
+

ψ

)α+1

; t1, t

]
− F [ψqxβ−α; t1, t]. (15)

Next, we consider the following three cases:
Case (i). Let β > α. From x′(t) > 0, there exists a constant m and a t2 ≥ t1,
such that

x(s) ≥ x(t2) = m.

Thus

xβ−α(s) ≥ m1, s ≥ t2, (16)

where m1 = mβ−α.
Case (ii). Let β = α. Then

xβ−α(s) = 1, s ≥ t1. (17)

Case (iii). Let β < α. Then there exists a constant b such that

r(s)(x′(s))α ≤ r(t1)(x
′(t1))α = b, s ≥ t1,

or

x′(s) ≤ b
1
α r−

1
α (s), s ≥ t1. (18)

Integrating (18) from t1 to s, we get

x(s) ≤ x(t1) + b
1
α

∫ s

t1

r−
1
α (t)dt.

Thus there exist constants b1 > 0 and t2 ≥ t1, such that

x(s) ≤ b1η
−1(s), s ≥ t2,
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that is

xβ−α(s) ≥ m2η
α−β(s), s ≥ t2, (19)

where m2 = bβ−α
1 .

Combining (15) with (16), (17) and (19), we have

F

[
ψqδ1 − ψr

(α+ 1)α+1

(
nφ+

ψ′
+

ψ

)α+1

; t1, t

]
≤ 0,

which leads to a contradiction with (10). This completes the proof. ¤

Applying our approach used in [10], we establish the following result:

Theorem 3.2. Assume that (2) holds. Furthermore, assume that there exists
functions Φ ∈ X, and ψ ∈ C1([t0,∞), R+). If (10) holds, and

∫ ∞ [
δ2q(t)ξ

α(t)− α

ξ(t)r
1
α (t)

]
dt = ∞, (20)

where

δ2 =

{
1, if β = α,

d0, d0 is any positive constant, if β 6= α,

then every solution of Eq. (1) is oscillatory.

Proof. Suppose to the contrary that x is a nonoscillatory solution of Eq. (1).
We may assume without loss of generality that there exists a number t1 ≥ t0,
such that x(t) > 0, for all t ≥ t1. Then by Eq. (1) we have (r(t)(x′(t))α)′ =
−q(t)xβ(t) ≤ 0, t ≥ t1, which implies that r(t)(x′(t))α is decreasing, and it is
eventually of one sign. So x′(t) is eventually of one sign. We shall distinguish
the following two cases:
(I) x′(t) > 0, t ≥ t1, and
(II) x′(t) < 0, t ≥ t1.
Case (I). Proceeding as in the proof of Theorem 3.1, we get a contradiction with
(10).
Case (II). Define the function υ by

υ(t) =
r(t)(x′(t))α

xα(t)
, t ≥ t1. (21)

Then υ(t) < 0 for t ≥ t1. Noting (r(t)(x′(t))α)′ ≤ 0, we have

r(s)(x′(s))α ≤ r(t)(x′(t))α, s ≥ t.

Dividing the above inequality by r(s) and integrating it from t to l, we obtain

x(l) ≤ x(t) + r
1
α (t)x′(t)

∫ l

t

r−
1
α (s)ds, l ≥ t. (22)

Letting l → ∞ in (22), we get

0 ≤ x(t) + r
1
α (t)x′(t)ξ(t), t ≥ t1,
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that is

r
1
α (t)ξ(t)

x′(t)
x(t)

≥ −1, t ≥ t1.

Thus
−r(t)(x′(t))αξα(t)

xα(t)
≤ 1. (23)

Applying (21) to (23), we have

−1 ≤ υ(t)ξα(t) < 0. (24)

Differentiating (21), using (1) and x′(t) < 0, we obtain

υ′(t) =
(r(t)(x′(t))α)′xα(t)− αr(t)(x′(t))αxα−1(t)x′(t)

x2α(t)
,

which follows that

υ′(t) ≤ −q(t)xβ−α(t). (25)

Next, we consider the following three cases:
Case (i). Let β > α. Then there exist a constant d1 ≥ 0 and t2 ≥ t1, such that

lim
t→∞

x(t) = d1.

Thus

xβ−α(t) ≥ d2, t ≥ t2, (26)

where d2 = dβ−α
1 .

Case (ii). Let β = α. Then

xβ−α(t) = 1, t ≥ t1. (27)

Case (iii). Let β < α. Then there exists a constant b < 0, such that

r(t)(x′(t))α ≤ r(t1)(x
′(t1))α = b < 0, t ≥ t1,

or

x′(t) ≤ b
1
α r−

1
α (t), t ≥ t1. (28)

Integrating (28) from t1 to t, we get

x(t) ≤ x(t1) + b
1
α

∫ t

t1

r−
1
α (s)ds.

Thus there exist constants m0 > 0 and t2 ≥ t1, such that

x(t) ≤ x(t1) = m0, t ≥ t2,

that is

xβ−α(t) ≥ m3, t ≥ t2, (29)

where m3 = mβ−α
0 .

Combining (25) with (26), (27) and (29), we have

υ′(t) ≤ −δ2q(t). (30)
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Multiplying (30) by ξα(t) and integrating it from t1 to t, we obtain

ξα(t)υ(t)− ξα(t1)υ(t1) + α

∫ t

t1

ξα−1(s)r−
1
α (s)υ(s)ds+

∫ t

t1

δ2q(s)ξ
α(s)ds ≤ 0.

(31)
Therefore, it follows from (24) and (31) that

ξα(t)υ(t) ≤ ξα(t1)υ(t1)−
∫ t

t1

(
δ2q(s)ξ

α(s)− α

ξ(s)r
1
α (s)

)
ds.

Letting t → ∞ in the above inequality, by (20), we get a contradiction with (24).
This completes the proof. ¤

If we choose Φ(t, s, l) = z(s)(t−s)a(s−l)b for a, b > 1/2 and z ∈ C1([t0,∞), R),
then for l < s < t we have

φ(t, s, l) =
z′(s)
z(s)

+
bt− (a+ b)s+ al

(t− s)(s− l)
.

Thus taking ψ(t) = 1 in Theorem 3.1, we have the following result.

Corollary 3.3. Suppose that (3) holds. Eq. (1) is oscillatory provided that
for each l ≥ t0, there exist a function z ∈ C1([t0,∞), R) and two constants
a, b > 1/2, such that

lim sup
t→∞

∫ t

l

zn(s)(t−s)na(s−l)nb·
[
q(s)δ1(s)− r(s)

(
n

α+ 1

)α+1 (
z′(s)
z(s)

+
bt− (a+ b)s+ al

(t− s)(s− l)

)α+1
]
ds > 0, (32)

where δ1 is defined as in Theorem 3.1.

Let r(t) ≡ 1. Taking a = b = 1, z(t) ≡ 1 and α = n − 1 where n is even
integer in Corollary 3.1, we have the following oscillation result.

Corollary 3.4. Suppose that (3) holds. If for each l ≥ t0,

lim sup
t→∞

1

tn+1

∫ t

l

(t− s)n(s− l)nq(s)δ1(s)ds >
1

n+ 1
, (33)

where δ1 is defined as in Theorem 3.1, then Eq. (1) with r(t) ≡ 1 is oscillatory.

Proof. Noting that
∫ t

l

[t− 2s+ l]nds =

∫ t

l

[(t− s)− (s− l)]nds =

∫ t

l

(s− l)nds =
1

n+ 1
(t− l)n+1,

from (33), we get

lim sup
t→∞

1

tn+1

∫ t

l

(t− s)n(s− l)n
[
q(s)δ1(s)−

(
t− 2s+ l

(t− s)(s− l)

)n]
ds

≥ lim sup
t→∞

1

tn+1

∫ t

l

(t− s)n(s− l)nq(s)δ1(s)ds− lim sup
t→∞

1

tn+1

∫ t

l

(t− 2s+ l)nds
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= lim sup
t→∞

1

tn+1

∫ t

l

(t− s)n(s− l)nq(s)δ1(s)ds− lim sup
t→∞

1

n+ 1

(t− l)n+1

tn+1

= lim sup
t→∞

1

tn+1

∫ t

l

(t− s)n(s− l)nq(s)δ1(s)ds− 1

n+ 1
> 0,

which implies that (33) holds for a = b = 1, z(t) ≡ 1 and α = n− 1 where n is
even integer. Then Eq. (1) with r(t) ≡ 1 is oscillatory by Corollary 3.1. This
completes the proof. ¤

If we choose Φ(t, s, l) =
√
H1(s, l)H2(t, s), where H1, H2 ∈ Y, then from (8),

we get

φ(t, s, l) =
1

2

[
h1(s, l)√
H1(s, l)

− h2(t, s)√
H2(t, s)

]
.

Thus taking ψ(t) = 1 in Theorem 3.1, we obtain the following result.

Corollary 3.5. Suppose that (3) holds. If for each l ≥ t0, there exist H1,H2 ∈ Y
such that

lim sup
t→∞

∫ t

l

(H1(s, l)H2(t, s))
n
2 ·


q(s)δ1(s)− r(s)

(
n

α+ 1

)α+1
(

h1(s, l)√
H1(s, l)

− h2(t, s)√
H2(t, s)

)α+1

 ds > 0, (34)

where δ1 is defined as in Theorem 3.1, then Eq. (1) is oscillatory.

4. Interval oscillation criteria

In this section, we establish some interval oscillation criteria for Eq. (1).
First, we give a lemma which will be used in the following results.

Lemma 4.1. Suppose that (3) holds. If x is a solution of Eq. (1) and x(t) 6= 0
on [c, d] ⊂ [t0,∞), then for any functions Φ ∈ X and ψ ∈ C1([t0,∞), R+),

F

[
ψqδ1 − ψr

(α+ 1)α+1

(
nφ+

ψ′
+

ψ

)α+1

; c, d

]
≤ 0, (35)

where the operator F is defined by (7), the function φ = φ(t, s, l) is defined by
(8), and δ1 is defined as in Theorem 3.1.

Proof. Define ω as in (11). We see that (12) holds. Applying F [·; c, d] to (12)
and proceeding as in the proof of Theorem 3.1, we obtain

0 ≤ F

[
ψr

(α+ 1)α+1

(
nφ+

ψ′
+

ψ

)α+1

; c, d

]
− F [ψqxβ−α; c, d].

Combining the above inequality with (16), (17) and (19), we have

F

[
ψqδ1 − ψr

(α+ 1)α+1

(
nφ+

ψ′
+

ψ

)α+1

; c, d

]
≤ 0.
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Hence, (35) holds. This completes the proof. ¤

Theorem 4.2. Suppose that (3) holds. Furthermore, suppose that there exist
functions Φ ∈ X and ψ ∈ C1([t0,∞), R+), such that

F

[
ψqδ1 − ψr

(α+ 1)α+1

(
nφ+

ψ′
+

ψ

)α+1

; c, d

]
> 0, (36)

where the operator F is defined by (7), the function φ = φ(t, s, l) is defined by
(8), and δ1 is defined as in Theorem 3.1. Then every solution of Eq. (1) has at
least one zero in [c, d].

Proof. Suppose the contrary. We may assume without loss of generality that
there exists a solution x of (1) such that x(t) > 0, for t ∈ [c, d]. By Lemma
4.1 we see that (35) holds for x, which contradicts the condition (36). This
completes the proof. ¤

Corollary 4.3. Suppose that (3) holds. If for each T0 ≥ t0, there exist c, d ∈ R,
Φ ∈ X and ψ ∈ C1([t0,∞), R+) such that T0 ≤ c < d and (36) holds, where the
operator F is defined by (7), the function φ = φ(t, s, l) is defined by (8), and δ1
is defined as in Theorem 3.1, then every solution of Eq. (1) is oscillatory.

Proof. Pick up a sequence Ti ⊂ [t0,∞) such that Ti → ∞ as i → ∞. By
the assumption, we find that for each i ⊂ N, there exist ci, di ⊂ R such that
Ti ≤ ci ≤ di and (36) holds, where c, d are replaced by ci, di, respectively. From
Theorem 4.1, every solution x of (1) has at least one zero, ti ∈ [ci, di]. Since
di ≥ ti ≥ ci ≥ Ti, i ∈ N, it follows that every solution has arbitrary large zeros.
Therefore, every solution of (1) is oscillatory. This completes the proof. ¤

Corollary 4.4. Suppose that (3) holds. If for each τ ≥ t0, there exist functions
Φ ∈ X and ψ ∈ C1([t0,∞), R+), such that

F

[
ψqδ1 − ψr

(α+ 1)α+1

(
nφ+

ψ′
+

ψ

)α+1

; τ, t

]
> 0, (37)

where the operator F is defined by (7), the function φ = φ(t, s, l) is defined
by (8), and δ1 is defined as in Theorem 3.1, then every solution of Eq. (1) is
oscillatory.

Proof. For any T0 ≥ t0, we set c = T0. In (37) we choose τ = c. Then there
exists d > c such that (36) holds. Hence, the conclusion comes from Corollary
4.1. This completes the proof. ¤

Similar to the discussions in section 3, we have the following corollaries.

Corollary 4.5. Suppose that (3) holds. If for each T0 ≥ t0, there exist d > c ≥
T0, z ∈ C1([m, l), R) and two constants a, b > 1/2, such that
∫ d

c

zn(s)(d−s)na(s−c)nb·
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[
q(s)δ1(s)− r(s)

(
n

α+ 1

)α+1 (
z′(s)
z(s)

+
bd− (a+ b)s+ ac

(d− s)(s− c)

)α+1
]
ds > 0,

then every solution of Eq. (1) is oscillatory.

Corollary 4.6. Suppose that (3) holds. Eq. (1) is oscillatory provided that for
each T0 ≥ t0, there exist two constants d > c ≥ T0 and H1,H2 ∈ Y, such that
∫ d

c

(H1(s, c)H2(d, s))
n
2 ·


q(s)δ1(s)− r(s)

(
n

α+ 1

)α+1
(

h1(s, c)√
H1(s, c)

− h2(d, s)√
H2(d, s)

)α+1

 ds > 0.

5. Examples

In this section, we will show the application of our oscillation criteria in two
examples. Firstly we will give an example to illustrate Theorem 3.2.
Example 5.1. Consider the second order nonlinear differential equation

(t4(x′(t))3)′ +
tλ

27
x5(t) = 0, (38)

where r(t) = t4, α = 3, β = 5, q(t) = tλ/27, and λ > 0 is a constant. Let
ψ(t) = 1, n = α+ 1 = 4, and Φ(t, s, l) = (t− s)(s− l). Then we have

∫ ∞

t0

t−
4
3 dt < ∞, ξ(t) =

∫ ∞

t

s−
4
3 ds = 3t−

1
3 .

Therefore, for all sufficiently large t1, when l ≥ t1, we get

lim sup
t→∞

F

[
ψqδ1 − ψr

(α+ 1)α+1

(
nφ+

ψ′
+

ψ

)α+1

; l, t

]

= lim
t→∞

∫ t

l

(t− s)4(s− l)4

[
m1

sλ

27
− s4

(
t− 2s+ l

(t− s)(s− l)

)4
]
ds

= lim
t→∞

∫ t

l

[
m1(t− s)4(s− l)4

sλ

27
− s4(t− 2s+ l)4

]
ds = ∞,

and we obtain∫ ∞ [
q(t)δ2ξ

α(t)− α

ξ(t)r
1
α (t)

]
dt =

∫ ∞ (
d0

tλ

27

27

t
− 1

t

)
dt = ∞.

We can see that (10) and (21) hold. Hence, by Theorem 3.2, every solution
of (38) is oscillatory.

The next example illustrates Corollary 4.1.
Example 5.2. Examine the second order nonlinear differential equation

((x′(t))α)′ + (2n+ 1)!!|sint|xα(t) = 0, (39)
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where r(t) = 1, q(t) = (2n + 1)!!|sint|. For any T0 ≥ t0, there exists a pos-
itive integer k such that 2kπ ≥ T0. Let c = 2kπ, d = (2k + 1)π. More-
over, choose Φ(t, s, l) = sin(t − s)sin(s − l), then we have Φ(d, s, c) = sin2s,
Φn(d, s, c)φn(d, s, c) = 2nsinnscosns. If we take ψ(t) = 1 and α = n − 1, where
n is even integer, we have

F

[
ψqδ1 − ψr

(α+ 1)α+1

(
nφ+

ψ′
+

ψ

)α+1

; c, d

]

≥
∫ d

c

Φn(d, s, c)(q(s)− φn(d, s, c))ds

= (2n+ 1)!!

∫ (2k+1)π

2kπ

sin2n+1sds− 2n
∫ (2k+1)π

2kπ

sinnscosnsds

= (2n+ 1)!!

∫ π

0

sin2n+1sds− 2n
∫ π

0

sinnscosnsds

≥ 2n+1n!− 2nπ > 0.

From Corollary 4.1, we see that (39) is oscillatory.
One can easily see that the results obtained in [1, 2, 4–6, 8, 9, 12] cannot be

applied in (38) and (39), so our results are new.
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