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A META-SOFTWARE SYSTEM FOR ORTHOGONAL DESIGNS

AND HADAMARD MATRICES

I. S. KOTSIREAS, C. KOUKOUVINOS∗ AND D. E. SIMOS

Abstract. In this paper, we construct inequivalent Hadamard matrices
based on several new and old full orthogonal designs, using circulant and
symmetric block matrices. Not all orthogonal designs produce inequivalent
Hadamard matrices, because the corresponding systems of equations do
not possess solutions. The systems of equations arising when we search for
inequivalent Hadamard matrices from full orthogonal designs using circu-
lant and symmetric block matrices, can be concisely described using the
periodic autocorrelation function of the generators of the block matrices.
We use Maple, Magma, C and Unix tools to find many new inequivalent
Hadamard matrices.
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1. Introduction

Definition 1.1. Let x1, . . ., xt be commuting indeterminates. An orthogonal
designX of order n and type (s1, . . . , st) denoted OD(n; s1, . . . , st), where s1, . . .,
st are positive integers, is a matrix of order n with entries from {0,±x1, . . . ,±xt},
such that

XXt =

(
t∑

i=1

six
2
i

)
In,

where Xt denotes the transpose of X and In denotes the identity matrix of order
n.

Orthogonal designs are used in Combinatorics, Statistics, Coding Theory,
Telecommunications and other areas. For more details on orthogonal designs
see [5, 28] and on Hadamard matrices see [2].
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The concepts of the periodic (PAF) and non-periodic (NPAF) autocorrelation
functions are described in [17].

2. Applications of Hadamard matrices

We give some references to works describing applications of Hadamard ma-
trices. We do not aim to provide a comprehensive, or by all means complete,
treatment of the subject, as this is not the purpose of the present paper. We
are merely interesting in giving a flavor of the many different application areas
involved, in order to exhibit that while Hadamard matrices are specialized types
of orthogonal designs their applications are of a broader interest.

As first noted in [26], Hadamard matrices are used in Statistics where they
generate optimal statistical designs used in weighing experiments. Hadamard
matrices play an important role also in Coding Theory where they generated
the so called Hadamard codes ([22]), i.e. error-correcting codes that correct the
maximum number of errors. It is worthwhile to note that, a Hadamard code
was used during the 1971 space probe Mariner 9 mission by NASA to correct
for picture transmission error. The Mariner 9 mission and the Coding Theory
used in that project are the subjects of [27] and [29].

Hadamard matrices are used in Telecommunications where they generate se-
quences used in digital communications and in Optics for the improvement of the
quality and resolution of image scanners. More details, regarding their applica-
tions in communications and signal/image processing can be found in [30]. Last
but not least, Hadamard matrices play an important role in Numerical Anal-
ysis in the study of the growth factor of Gaussian Elimination with Complete
Pivoting ([3]). Hadamard matrices, are the only known matrices till today that
achieve a growth factor equal to their dimension.

3. Sequences with zero periodic autocorrelation function and
orthogonal designs

The classical Williamson array

H =




A B C D

−B A −D C

−C D A −B

−D −C B A




has been used to construct inequivalent Hadamard matrices [6]. Specifically, let
U be the matrix of order n

U =




0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . .

...
0 0 0 . . . 1
1 0 0 . . . 0
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which has the property Un = In. The matrix U is used to define the block
matrices of order n in the classical Williamson array, as polynomials in U with±1
coefficients. Then the block matrices will commute with each other. Moreover,
by imposing symmetry conditions on the coefficients, the block matrices will be
symmetric, in view of the fact that UT = U−1. The four matrices A, B, C, D
are defined by polynomials in U as follows:

A = a0In + a1U + · · · + an−1U
n−1

B = b0In + b1U + · · · + bn−1U
n−1

C = c0In + c1U + · · · + cn−1U
n−1

D = d0In + d1U + · · · + dn−1U
n−1

(1)

where the 4n coefficients a0, . . ., an−1, b0, . . ., bn−1, c0, . . ., cn−1, d0, . . ., dn−1

satisfy the additional symmetry conditions

an−i = ai, bn−i = bi, cn−i = ci, dn−i = di, i = 1, . . . , n− 1. (2)

Then the requirement HHt = (4n)I4n gives rise to a system of polynomial
equations in the 2n+ 2 indeterminates (take n to be odd)

It is conceivable to use the same process with more general arrays that the
Williamson array, i.e. with full orthogonal designs, to look for inequivalent
Hadamard matrices.

Let m be a multiple of 4 and let OD(m; a1, . . . , ak) be a full orthogonal de-
sign (a1 + · · · + ak = m) of order m with k variables (k ≤ ρ(m) where ρ(m)
denotes the Radon function [5]). Then we can replace each variable appearing
in the full orthogonal design by a matrix of order n that we build with the
matrix U and the necessary number of indeterminates. We wrote a meta-meta
program (described in the next section) to implement this idea more system-
atically. After using our program with several different orthogonal designs, we
give the following formalism which allows one to use the PAF concept [17] to
provide a concise description of the systems of polynomial equations that arise
in the search for inequivalent Hadamard matrices from orthogonal designs. This
formalism enables one to determine whether certain blocks are suitable for the
construction of a Hadamard matrix from a given orthogonal design as a system
of linear equations.

In particular, consider n to be an odd integer such that n ≥ 3 and set p = n−1
2 .

For all values of i from 1 to k, suppose that each of the ai equal variables in
the rows/columns of the orthogonal design is replaced by an n×n circulant and
symmetric matrix of indeterminates Ai. When Ai is constructed as a polynomial
via the matrix U , then a sequence of p+1 indeterminates Ap

i = [a0i , . . . , a
p
i ] suf-

fices to fully describe Ai. Denote by O the resulting mn×mn matrix. Then the
relationship OOt = (mn)Imn gives rise to the following system of p polynomial
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equations in k(p+ 1) binary unknowns:

a1PAFAp
1
(1) + · · ·+ akPAFAp

k
(1) +

m

2
= 0

...
...

...

a1PAFAp
1
(p) + · · ·+ akPAFAp

k
(p) +

m

2
= 0

(3)

In addition, when g = gcd
(
a1, . . . , ak,

m

2

)
> 1, these equations can be simplified

by dividing throughout by g.

Example 3.1. To illustrate the application of the previous formalism, suppose
we are given the full orthogonal design of order 16, OD(16; 1, 2, 2, 2, 2, 2, 2, 3) in
8 variables a, b, c, d, e, f, g, h:



a b b b c c d d e e f f g g h h

−b a b −b c −c d −d e −e f −f g −g h −h

b b −a −b −d −d c c −f −f e e −h −h g g

b − b b −a −d d c −c −f f e −e −h h g −g

−c −c −d −d a b b b g g −h −h −e −e f f

−c c −d d −b a b −b g −g −h h −e e f −f

d d −c −c b b −a −b h h g g −f −f −e −e

d −d −c c b −b b −a h −h g −g −f f −e e

−e −e −f −f −g −g h h a b b b c c −d −d

−e e −f f −g g h −h −b a b −b c −c −d d

f f −e −e −h −h −g −g b b −a −b d d c c

f −f −e e −h h −g g b −b b −a d −d c −c

−g −g −h −h e e −f −f −c −c d d a b b b

−g g −h h e −e −f f −c c d −d −b a b −b

h h −g −g f f e e −d −d −c −c b b −a −b

h −h −g g f −f e −e −d d −c c b −b b −a




and that we are replacing each variable by a symmetric and circulant matrix of
order n. Then we can write down directly the system of polynomial equations
that arise in an efficient fashion for hard computation in a machine.

• n = 3,m = 16, p = 1

a0a1 + 3b0b1 + 2c0c1 + 2d0d1 + 2e0e1 + 2f0f1 + 2g0g1 + 2h0h1 + 8 = 0

The above equation has 4096 solutions, when all variables take±1 values.
One solution (in the format [a0a1b0b1c0c1d0d1e0e1f0f1g0g1h0h1]) is given
by:
[-1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1]

These solutions give rise to 4096 Hadamard matrices of order 16 · 3 =
48. Now we search for inequivalent Hadamard matrices of order 48 using
Magma, within this set of 4096 Hadamard matrices.

• n = 5,m = 16, p = 2

a0a2 + a1a2 + 3b0b2 + 3b1b2 + 2c0c2 + 2c1c2 + 2d0d2 + 2d1d2+

2e0e2 + 2e1e2 + 2f0f2 + 2f1f2 + 2g0g2 + 2g1g2 + 2h0h2 + 2h1h2 + 8 = 0
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a0a1 + a1a2 + 3b0b1 + 3b1b2 + 2c0c1 + 2c1c2 + 2d0d1 + 2d1d2+

2e0e1 + 2e1e2 + 2f0f1 + 2f1f2 + 2g0g1 + 2g1g2 + 2h0h1 + 2h1h2 + 8 = 0

The above equations have 92160 solutions, when all variables take ±1
values. One solution (in the format [a0a1a2b0b1b2c0c1c2d0d1d2e0e1e2f0f1
f2g0g1g2h0h1h2]) is given by:

[-1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1,

1, -1, -1, 1, 1, -1, 1, -1]

These solutions give rise to 92160 Hadamard matrices of order 16 ·5 =
80. Now we search for inequivalent Hadamard matrices of order 80 using
Magma, within this set of 92160 Hadamard matrices.

• n = 7,m = 16, p = 3
a0a2+a1a3+a2a3+3b0b2+3b1b3+3b2b3+2c0c2+2c1c3+2c2c3+2d0d2+

2d1d3 +2d2d3 +2e0e2 +2e1e3 +2e2e3 +2f0f2 +2f1f3 +2f2f3 +2g0g2 +
2g1g3 + 2g2g3 + 2h0h2 + 2h1h3 + 2h2h3 + 8 = 0

a2a3 + a0a1 + a1a2 +3b2b3 +2c2c3 +2d2d3 +2e2e3 +2f2f3 +2g2g3 +
2h2h3 +3b0b1 +3b1b2 +2c0c1 +2c1c2 +2d0d1 +2d1d2 +2e0e1 +2e1e2 +
2f0f1 + 2f1f2 + 2g0g1 + 2g1g2 + 2h0h1 + 2h1h2 + 8 = 0

a1a3 + a1a2 + a0a3 +3b1b3 +2c1c3 +2d1d3 +2e1e3 +2f1f3 +2g1g3 +
2h1h3 +3b1b2 +2c1c2 +2d1d2 +2e1e2 +2f1f2 +2g1g2 +2h1h2 +3b0b3 +
2c0c3 + 2d0d3 + 2e0e3 + 2f0f3 + 2g0g3 + 2h0h3 + 8 = 0
The above equations have 1105920 solutions, when all variables take ±1
values. One solution (in the format [a0a1a2a3b0b1b2b3c0c1c2c3d0d1d2d3
e0e1e2e3f0f1f2f3g0g1g2g3h0h1h2h3]) is given by:

[-1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1,

-1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1]

These solutions give rise to 1105920 Hadamard matrices of order 16 ·
7 = 112. Now we search for inequivalent Hadamard matrices of order
112 using Magma, within this set of 1105920 Hadamard matrices.

4. Meta-meta programming for orthogonal designs

Meta-programming is not a new concept, and has been successfully employed
before in cases where software reuse, the process of creating software systems
from existing software rather than building software systems from scratch, was
neeeded [19]. Before continuing we will list some uses of meta-programming:

• Generation - metacode that generates code
• Transformation - metacode that modifies code (similar to generation)
• Translation - transformation into another language
• Analysis - metacode that analyzes code

The metasoftware we have developed for orthogonal designs and Hadamard
matrices in order to search for inequivalent Hadamard matrices makes efficient
use of all previous four methods of meta-programming. In particular, the meta-
program is using bash shell as its metalanguage whilst the object-language that
each program is manipulated are the Computer Algebra Systems, Maple and
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Magma. Maple provides an excellent way for performing symbolic and numeri-
cal computations, especially when we have to interpret methods that are based
on combinatorial mathematics. We implemented a Maple package containing
the necessary constructions for the generation of Hadamard matrices from or-
thogonal designs in Maple, in order to achieve the best possible flexibility in
terms of portability with other Computational Algebra Systems, such as Magma.
We finally used Magma to automatically perform the searches for inequivalent
Hadamard matrices. Earlier attempts of software systems capable to perform
searches for inequivalent Hadamard matrices could be found in [4], [11], [12],
[13], [15] and [16]. A recent application of the presented metasoftware can be
found in [18]. The metasoftware given below, could be seen as a unification and
further expansion of the aforementioned works which leads to the production
of large databases of new inequivalent Hadamard matrices. All details of the
presented metasoftware from an algorithmic perspective are presented in this
Section, in Algorithm 1.

We wrote a meta-meta program that accepts as input a text file with an
orthogonal design and produces a Maple file that produces a C file that can
be compiled and executed to solve exhaustively the system of equations corre-
sponding to this orthogonal design. The meta-meta program is using bash shell,
and the CodeGeneration Maple package. Some of the principal difficulties in
the design of this program lie in the dynamic production of the values of the
variables that capture the characteristics of the orthogonal design in the input
text file, i.e. the order, the number of variables and the list of different variables.
We give below in pseudo-code the meta-meta program we have used.

In particular, the systems of equations arising from the search for inequiva-
lent Hadamard matrices from full orthogonal designs using circulant and sym-
metric block matrices, can be solved using high-performance computing. Not
all orthogonal designs produce inequivalent Hadamard matrices, because the
corresponding systems of equations may (or may not) posses solutions, as it
was shown in [10]. We used Maple to automatically generate C programs that
we subsequently parallelized via a bash/sed/awk script. In detail, two-phase
metaprogram that accepts as input a text file with an orthogonal design and
produces a Maple file that produces a C file that can be compiled and executed
to solve exhaustively the system of equations corresponding to this orthogonal
design. The meta-meta program is using bash shell, and the CodeGeneration

Maple package. The use of scripting and meta-programming with Maple’s auto-
matic code generation functionalities, ensure efficient and correct prototyping.
During the second phase, the program uses Magma to build a Hadamard matrix
corresponding to each solution found and then uses the buckets algorithm, given
in [8], to locate inequivalent Hadamard matrices. The constructive bounds on
the number of inequivalent Hadamard matrices are constantly updated on the
Web. Another important outcome of this on-going project is the interaction with
Coding Theory, via self-dual code constructions based on Hadamard matrices
for instance.
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Algorithm 1 HMOD

1: procedure HMOD(OD,n) . n is the size of block matrices
Require: n odd
Ensure: Generation of binary vectors corresponding to Hadamard matrices
2: validate that given OD is an orthogonal design
3: do awk to detect the order and the variables of the OD
4: assign variable names to the variables of the OD
5: calculate the order of Hadamard matrices
6: assign a list to the k variables of the OD
7: set p equal to (n− 1)/2
8: transform in Maple format given inputs
9: create Maple input file from OD and the variables of the OD . Begin Maple

phase
10: begin for loop from 1 to k
11: create the sequence of p+ 1 indeterminates
12: replace the OD variables with symmetric circulant matrices
13: end for loop
14: begin for loop from 1 to p
15: compute PAF equations from relation (3)
16: end for loop
17: do sed to create a Maple file containing the polynomial equations
18: call procedure Maple2C to convert the equations in C format . End Maple phase
19: compile the C file . Begin C phase
20: execute the C executable . End C phase
21: do sed/awk to convert the output into solutions in Magma format
22: return solutions as binary vectors representing the Hadamard matrices
23: end procedure

24: procedure Maple2C(PolEqs) . PolEqs are the polynomial equations in Maple
format

Require: Polynomial equations in Maple format
Ensure: Conversion to C format
25: call CodeGeneration Maple package
26: declare types of variables in C and procedures to be converted
27: execute C conversion of polynomial equations
28: return the polynomial equations in C format
29: end procedure

5. Specific full orthogonal designs

Using algorithm 1 we searched for inequivalent Hadamard matrices with the
41 full orthogonal designs listed below. The first orthogonal design in the list
below is the classical Williamson array, that we included in our search simply for
consistency check purposes. The remaining 40 full orthogonal designs appear in
the book [5] or were found in the papers [7], [9], [14].
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Table 1. List of orthogonal designs used by algorithm 1

OD(4;1,1,1,1) OD(16;1,1,1,1,3,3,3,3)
OD(16;1,2,2,2,2,2,2,3) OD(24;1,1,1,1,2,2,8,8)
OD(24;1,1,1,1,5,5,5,5) OD(24;1,1,2,2,3,3,6,6)
OD(24;1,4,4,15) OD(24;2,2,2,2,4,4,4,4)
OD(24;3,3,3,3,3,3,3,3) OD(32;4,4,4,4,4,4,4,4)
OD(32;4,4,4,4,8,8) OD(40;1,1,1,1,9,9,9,9)
OD(40;1,1,1,2,9,26) OD(40;1,1,2,2,17,17)
OD(40;2,2,2,2,8,8,8,8) OD(40;2,2,5,5,5,5,8,8)
OD(40;5,5,5,5,5,5,5,5) OD(56;1,1,2,2,25,25)
OD(56;4,4,4,4,10,10,10,10) OD(56;7,7,7,7,7,7,7,7)
OD(64;16,16,16,16) OD(64;4,4,4,4,12,12,12,12)
OD(64;4,4,8,8,8,8,8,8,8) OD(64;4,8,8,8,8,8,8,12)
OD(64;8,8,8,8,16,16) OD(64;8,8,8,8,8,8,8,8)
OD(96;4,4,4,4,20,20,20,20) OD(96;8,8,8,8,16,16,16,16)
OD(128;16,16,16,16,16,16,16,16) OD(128;8,16,16,16,16,16,16,24)
OD(128;8,8,16,16,16,16,16,16,16) OD(128;8,8,8,8,24,24,24,24)
OD(144;12,12,12,12,24,24,24,24) OD(144;4,4,4,4,32,32,32,32)
OD(112;14,14,14,14,14,14,14,14) OD(80;4,4,10,10,10,10,16,16)
OD(112;8,8,8,8,20,20,20,20) OD(80;4,4,4,4,16,16,16,16)
OD(144;18,18,18,18,18,18,18,18) OD(96;12,12,12,12,12,12,12,12)
OD(80;10,10,10,10,10,10,10,10)

6. Inequivalent Hadamard matrices

The importance of using orthogonal designs to look for inequivalent Hadamard
matrices of several orders, is exhibited by the fact that the larger the order of the
orthogonal design and the fewer the number of variables in it, the less equations
and variables we need to look for inequivalent Hadamard matrices of large orders.
To illustrate this point, consider the full orthogonal design

OD(144; 4, 4, 4, 4, 32, 32, 32, 32)

of order 144 in 8 variables. When we use algorithm HMOD with n = 5, then
we are constructing Hadamard matrices of order 432 by solving an easy system
of 2 equations in 32 binary variables. However, if we were to use the classical
Williamson array for instance, to construct Hadamard matrices of order 432,
then we would need to consider block matrices of order n = 108, which is cur-
rently entirely outside the scope of any known algorithm.
The computations are using Magma V 2.13 and are still on-going. With Nn in
the following tables we denote the number of inequivalent Hadamard matrices
found for each order n.



A Meta-software System for Orthogonal Designs and Hadamard Matrices 1579

Table 2. Constructive lower bounds for inequivalent
Hadamard matrices of order 40 to 168

n 40 48 72 80 96 112 120 160 168

Nn 8 10 238 30 3 122 5161 8 6760

Table 3. Constructive lower bounds for inequivalent
Hadamard matrices of order 192 to 448

n 192 200 240 280 320 400 448

Nn 14 7246 148 2940 34 818 10

Remark 6.1. We note that the presented Hadamard matrices in the Tables,
that are constructed using orthogonal designs, are inequivalent since for each
order we found that the corresponding 4-profiles are different.

In addition, one could check the generated Hadamard matrices from orthogonal
designs for inequivalence using the graph isomorphism criterion, which is more
time consuming [1, 23], but locates much more inequivalent Hadamard matrices.

The complete classification for Hadamard matrices of order n is well known
for n ≡ 0 (mod 4), n ≤ 28. For n = 32, 36 there are at least 3, 578, 006 and
4, 745, 357 inequivalent Hadamard matrices respectively, see [25]. On the other
hand, there are some theoretical results which provide huge lower bounds, see
[20, 21, 24] but these matrices are not available. From this perspective we be-
lieve that our lower bounds on the number of inequivalent Hadamard matrices,
which are presented in this section have value for practitioners in the fields of
Combinatorics and Statistics (see Section 2) since these are constructive. More-
over, the given inequivalent Hadamard matrices are only a sample; considering
that the list of the 41 full orthogonal designs given in Section 5, is by no means
complete. The main aim of the presented metasoftware is to establish a com-
putational framework for the automated construction of inequivalent Hadamard
matrices, whenever this is desired by the specialists of Design Theory and its
applications.
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