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A REVIEW ON THE MATHEMATICAL ASPECTS OF FLUID

FLOW PROBLEMS IN AN INFINITE CHANNEL WITH

ARBITRARY BOTTOM TOPOGRAPHY

A. CHAKRABARTI AND S. C. MARTHA∗

Abstract. A special system of partial differential equations (PDEs) oc-
cur in a natural way while studying a class of irrotational inviscid fluid
flow problems involving infinite channels. Certain aspects of solutions of
such PDEs are analyzed in the context of flow problems involving multiple
layers of fluids of different constant densities in a channel associated with
arbitrary bottom topography. The whole analysis is divided into two parts-
part A and part B. In part A the linearized theory is employed along with
the standard Fourier analysis to understand such flow problems and phys-
ical quantities of interest are derived analytically. In part B, the same set
of problems handled in part A are examined in the light of a weakly non-
linear theory involving perturbation in terms of a small parameter and it
is shown that the original problems can be cast into KdV type of nonlinear
PDEs involving the bottom topography occurring in one of the coefficients
of these equations. Special cases of bottom topography are worked out in
detail and expressions for quantities of physical importance are derived.
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1. Introduction

The problems of free surface fluid flow over submerged obstacles have cre-
ated varieties of challenges to model the situations in engineering and in at-
mospheric and oceanographic sciences. The linearized solution can be found in
Lamb [10] and others. Such problems were considered for their complete so-
lution by Forbes and Schwartz [8], Vanden-Broeck [13], Forbes [7], Dias and
Vanden-Broeck [3], Shen et.al. [12], Akylas [1], Dias and Vanden-Broeck [4] and

Received October 4, 2010. Revised April 22, 2011. Accepted May 6, 2011. ∗Corresponding

author.

c© 2011 Korean SIGCAM and KSCAM.

1583



1584 A. Chakrabarti and S. C. Martha

many others. Problems for unsteady solutions were considered by Grimshaw
and Smyth [9], Milewski and Vanden-Broeck [11]. The problem involving two
layers of fluids where the fluid in each layer is inviscid and incompressible, were
handled by Belward and Forbes [2], Dias and Vanden-Broeck [5, 6], assuming
the upper fluid layer to be bounded by a rigid lid.

In this paper, we consider the flow problems involving two layers of fluids
of different constant densities in a channel associated with arbitrary bottom
topography where the upper fluid layer has two different constraints, as given
by

(i) The upper fluid layer is bounded by a rigid lid,
(ii) The top surface of the upper fluid layer is free to the atmosphere.

The entire analysis is divided into two parts- part A and part B. In part A
the linearized theory is employed along with the Fourier analysis and analytical
expressions have been derived for the elevation of the interface as well as of
the free surface. In part B, the same set of problems handled in part A are
handled by using a specially designed weakly nonlinear theory and it is shown
that the original problems can be be solved approximately by the aid of KdV
type of nonlinear PDEs, involving the bottom topography, arising in one of the
coefficients of such KdV equation.

2. Description of the problems

We consider a system of two layers of fluids of different constant densities,
one on the top of the other, flowing over an arbitrary topography in an infinite

channel. The profile of the topography is given by y = ĥ(x) where the x−axis
is chosen to be along the bottom of the channel and y−axis is chosen in the
vertically upward direction. The fluid in each layer is assumed to be incom-
pressible and inviscid and the flow is two-dimensional, irrotational with the far
upstream velocity uniform. Quantities related to the upper layer of fluid will
have the subscript 1, while those related to the lower layer will be indexed with
2. We denote the upstream depth of each layer by H1 and H2 and the upstream
horizontal velocity in each layer by c1 and c2. Densities, velocities and pressures
in each layer are ρj ,

−→q j and pj at any point (xj , yj), j = 1, 2.
Let φj , (j = 1, 2) be the velocity potentials in layer j. So −→q j = (uj , vj) =

(φj,x, φj,y) where φj,x denotes the partial derivative of φj with respect to x and
φj,y denotes the partial derivative of φj with respect to y. In the following
sections φj,xx denotes the second order partial derivative of φj with respect to
x and φj,yy denotes the second order partial derivative of φj with respect to y.

The above variables are non-dimensionalized using H2 as the length scale and
c2 as the velocity scale. So the lower layer has an upstream uniform speed of
1 and upstream uniform height 1. The dimensionless quantities representing
the ratio of depths of the layers δ, the density ratio D, the ratio of upstream
fluid speeds and also the Froude number in the lower layer are defined by the
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relations:

δ =
H1

H2
, D =

ρ1
ρ2

, γ =
c1
c2

and F2 =
c2√
gH2

. (1)

3. Part-A: Linear theory

We assume propagation of stationary waves with respect to the bottom profile,
so that the partial derivatives with respect to time can be taken equal to zero.
Then the following following analysis can be employed.

3.1. Problem of Two-layer fluid flow (upper fluid layer is bounded
by a rigid lid). The fluid flow problem involving two layers of fluids in an
infinite channel associated with arbitrary bottom topography where the upper
fluid layer is bounded by a rigid lid is considered. Hence, φj satisfies the following
equations:

φj,xx + φj,yy = 0, j = 1, 2, within each fluid (2a)

φ1,n = 0, on y = δ + 1, (2b)

φj,n = 0, j = 1, 2, on y = S(x), (2c)

φ2,n = 0, on y = B(x), (2d)

1

2
F 2
2 (q

2
2 −Dq21) + (1−D)S(x) =

1

2
F 2
2 (1−Dγ2) + (1−D), on y = S(x), (2e)

where y = S(x) represents the interface and B(x) = ĥ(x)/H2.
The upstream conditions are

−→q1 → γ
−→
i , −→q2 → −→

i , S(x) → 1, as x → −∞. (3)

Here, we assume that the bottom profile is given by B(x) = hf(x) where h is
the height of the bottom profile, a dimensionless small quantity. Now we use the
asymptotic expansions of the form, for very small values of h(h << 1):

S(x) = 1 + hS1(x) +O(h2)
φ1(x, y) = γx+ hφ11(x, y) +O(h2)
φ2(x, y) = x+ hφ21(x, y) +O(h2)



 , (4)

in the above equations and get, to the order of h,

φj1,xx + φj1,yy = 0, within each fluid (5a)

φ11,y = 0, on y = 1 + δ, (5b)

φ11,y = γS′
1(x), on y = 1, (5c)

φ21,y = S′
1(x), on y = 1, (5d)

F 2
2 (φ21,x −Dγφ11,x) + (1−D)S1(x) = 0, on y = 1, (5e)

φ21,y = f ′(x), on y = 0, (5f)

where S1(x), φ11(x, y) and φ21(x, y) are to be determined.
The system, defined by the relations (5a)-(5f) gives rise to the linearized

version of the original problem.
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To solve the boundary value problem involving equations (5a) to (5f) we now
assume that the first order potentials φj1(x, y), j = 1, 2 and the bottom profile
f(x) are such that the Fourier transforms of φj1 and f(x) exist and are defined
as follows:

φj1(x, y) =

∫ ∞

0

φ̂j1(k, y) sin(kx)dk, (6a)

with the inverse transform

φ̂j1(k, y) =
2

π

∫ ∞

0

φj1 sin(kx)dx, (6b)

and

f(x) =

∫ ∞

0

M(k) cos(kx)dk, (6c)

with the inverse transform

M(k) =
2

π

∫ ∞

0

f(x) cos(kx)dx, (6d)

where M(k) is determined by the bottom profile. For this bottom profile, let’s
define S1(x) as

S1(x) =

∫ ∞

0

a(k) cos(kx)dk. (6e)

Applying Fourier sine transform to the above equations (5a)-(5f) and solving
them, we obtain:

φ11(x, y) =

∫ ∞

0

γa(k)

sinh kδ
cosh k(y − 1− δ) sin kxdk, (7a)

φ21(x, y) =

∫ ∞

0

[{−a(k) cosh k +M(k)

sinh k

}
cosh k(y − 1)

−a(k) sinh k(y − 1)

]
sin kxdk, (7b)

with a(k) =
F 2
2 kM(k) sinh(kδ)

E(k)
, (7c)

where

E(k) = {F 2
2 k cosh k − (1−D) sinh k} sinh kδ + γ2DF 2

2 k sinh k cosh kδ. (7d)

Here the dispersion relation is given by

E(k0) = 0, (8)

where k0 is the wave number of the downstream waves. Note that (−k0) is also
another real root of the equation (8).



Mathematical aspects of fluid flow problems in an infinite channel 1587

Example: Known bottom profile. We consider the smooth bottom profile as given
by

f(x) =

{
1
2

(
1 + cos πx

L

)
, −L ≤ x ≤ L

0, otherwise
(9)

and hence, a(k) can be determined as

a(k) =
πF 2

2 sin(kL) sinh(kδ)

L2 {(π2/L2)− k2}E(k)
. (10)

From the equations (6e) and (7d), we get

S1(x) =
πF 2

2

4L2

[∫ ∞

−∞

sin[k(x+ L)] sinh(kδ)

{(π2/L2)− k2}E(k)
dk −

∫ ∞

−∞

sin[k(x− L)] sinh(kδ)

{(π2/L2)− k2}E(k)
dk

]
. (11)

Now, if
F 2

2 (γ
2D+λ)

λ(1−D) < 1, E(k) = 0 has a nonzero real solution. Each integral in

the relation (11) is singular with poles on the real axis at k = ±k0, (k0 > 0), and
then, the integrals in (11) have to be understood as CPV, with an indentation
below the singularities k = ±k0.

Hence, we find that

S1(x) =





−πF 2
2

L2k0

sinh k0δ

h(k0)
sin k0x sin k0L, , for x > L

0, for x < −L
, (12)

where h(k) =
(

π2

L2 − k2
)
F (k) with E(k) = (k2 − k20)F (k). The form (12) is

oscillatory in nature, representing a wave, downstream and no wave upstream.

3.2. Problem of Two-layer fluid flow (top surface of the upper layer is
a free surface). Considering the same problem of the previous case as described
in the section 3.1, we proceed to handle the case where the top surface of the
upper fluid layer is a free surface to the atmosphere. Hence, φj satisfies the
following equations:

φj,xx + φj,yy = 0, j = 1, 2, within each fluid (13a)

φ1,n = 0, on y = Ŝ(x), (13b)

φj,n = 0, j = 1, 2, on y = S(x), (13c)

φ2,n = 0, on y = B(x), (13d)

1

2
F 2
2 (q

2
1 − γ2) + Ŝ(x) = 1 + δ, on y = Ŝ(x). (13e)

1

2
F 2
2 (q

2
2 −Dq21) + (1−D)S(x) =

1

2
F 2
2 (1−Dγ2) + (1−D), on y = S(x) (13f)

where y = S(x) represents the interface, y = Ŝ(x) represents the free surface
and B(x) represents the same form as considered in section 3.1. Now we use the
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regular perturbations of the forms (for h << 1):

φ1(x, y) = γx+ hφ11(x, y) +O(h2)
φ2(x, y) = x+ hφ21(x, y) +O(h2)
S(x) = 1 + hS1(x) +O(h2)

Ŝ(x) = 1 + δ + hŜ1(x) +O(h2)





. (13g)

and obtain the linearized system:

φj1,xx + φj1,yy = 0, within each fluid (14a)

φ11,y = γŜ′
1(x), on y = 1 + δ, (14b)

φ11,y = γS′
1(x), on y = 1, (14c)

φ21,y = S′
1(x), on y = 1, (14d)

φ21,y = f ′(x), on y = 0, (14e)

F 2
2 γφ11,x + Ŝ1(x) = 0, on y = 1 + δ, (14f)

F 2
2 (φ21,x −Dγφ11,x) + (1−D)S1(x) = 0, on y = 1. (14g)

where S1(x), Ŝ1(x), φ11(x, y) and φ21(x, y) are to be determined.
In order to solve the boundary value problem involving equations (14a) to

(14g), we consider the same transforms of φj1(x, y), j = 1, 2 and f(x) as defined
in the section 3.1 with the following:

Ŝ1(x) =

∫ ∞

0

a1(k) cos(kx)dk, (15a)

and

S1(x) =

∫ ∞

0

a2(k) cos(kx)dk. (15b)

Applying Fourier sine transform, we get:

φ11(x, y) =

∫ ∞

0

[γ{a2(k)− a1(k) cosh kδ}
sinh kδ

cosh k(y − 1− δ)

−γa1(k) sinh k(y − 1− δ)
]
sin kxdk, (16a)

φ21(x, y) =

∫ ∞

0

[{−a2(k) cosh k +M(k)

sinh k

}
cosh k(y − 1)

−a2(k) sinh k(y − 1)
]
sin kxdk, (16b)

with

a1(k) =
F 2
2 γ

2

E1(k)
a2(k), (16c)

a2(k) =
E1(k)

E2(k)
F 2
2 kM(k) sinh kδ, (16d)

where

E1(k) =
1

k
{F 2

2 γ
2k cosh kδ − sinh kδ} (17)
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E2(k) =
[
F 2
2 k cosh k sinh kδ + {F 2

2Dγ2k cosh kδ

−(1−D) sinh kδ} sinh k
]
E1(k)− γ4DF 4

2 k sinh k. (18)

Note that here E1(−k) = E1(k) and E2(−k) = E2(k).

Example: Known bottom profile. For the known bottom profile given by the
relation (9), a2(k) and a1(k) can be determined as

a1(k) = πF 4
2 γ

2 sin kL sinh kδ

π2 − L2k2
, (19a)

a2(k) = πF 2
2

E1(k)

E2(k)

sin kL sinh kδ

π2 − L2k2
, (19b)

and hence, we get

Ŝ1(x) =
πF 4

2 γ
2

4L2

∫ ∞

−∞

sinh(kδ)

{(π2/L2)− k2}E2(k)
[sin k(x+ L)− sin k(x− L)]dk, (20a)

S1(x) =
πF 2

2

4L2

∫ ∞

−∞

E1(k) sinh(kδ)

{(π2/L2)− k2}E2(k)
[sin k(x+ L)− sin k(x− L)]dk. (20b)

Here also, we observe that each integral in the relations (20a) and (20b) is
singular with poles on the real axis at k = ±k0, (k0 > 0) which are zeros of
E2(k) = 0 and then, the integrals in (20a) and (20b) have to be understood as
CPV, with an indentation below the singularities k = ±k0. Hence, we find that

Ŝ1(x) =

{
−π2F 4

2 γ
2

L2k0

sinh k0δ
h1(k0)

sin k0x sin k0L, for x > L

0 for x < −L
, (21a)

S1(x) =

{
−π2F 2

2

L2k0

sinh k0δ
h2(k0)

sin k0x sin k0L, for x > L

0 for x < −L
, (21b)

where h1(k) =
(

π2

L2 − k2
)
Q(k), h2(k) =

(
π2

L2 − k2
)

Q(k)
E1(k)

with E3(k) = (k2 −
k20)Q(k). We have thus shown the existence of wave downstream and no wave
upstream in this case also.

4. Part-B: Weakly nonlinear theory

4.1. One-layer fluid flow Problem.

4.1.1. Formulation of the problem. Consider the fluid flow in an infinite
channel where y = H + η(x, t) and y = 0 represent, respectively, the free surface
and the bottom. Hence the velocity potential φ satisfies the following equations:

∇2φ = 0, −∞ < x < ∞, 0 ≤ y ≤ H + η(x, t). (22)

with boundary conditions

φy = ηt + ηxφx, on y = H + η(x, t), (23)

φt +
1

2
(φ2

x + φ2
y) + g(H + η) = B(t), on y = H + η(x, t), (24)
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φy = 0, on y = 0. (25)

4.1.2. Derivation of KdV equation. Assuming η(x, t) = aη̂(x, t) with
a << 1 and for making these equations dimensionless, we use the scaled vari-
ables:

x̄ =
x

λ
, ȳ =

y

H
, φ̄ =

Hφ

λa
√
gH

, t̄ =
t
√
gH

λ
. (26)

Hence, the dimensionless system is

ε2φ̄x̄x̄ + φ̄ȳȳ = 0, −∞ < x̄ < ∞, 0 ≤ ȳ ≤ 1 + αη̂(x̄, t̄), (27)

φ̄ȳ = ε2(η̂t̄ + αφ̄x̄η̂x̄), on ȳ = 1 + αη̂(x̄, t̄) (28)

φ̄t̄ +
1

2
α
(
φ̄2
x̄ + ε−2φ̄2

ȳ

)
+ η̂ = (B(t̄)− gH)/ag, on ȳ = 1 + αη̂(x̄, t̄) (29)

φ̄ȳ = 0, on ȳ = 0. (30)

where ε = H
λ << 1 and α = a

H << 1 are two small parameters.

To remove ε from the equations, introducing the transformation

z =
α1/2

ε
(x̄− t̄), τ =

α3/2

ε
t̄, ψ =

α1/2

ε

[
φ̄−

∫ t̄

0

B(s)− gH

ag
ds

]
, (31)

we get,

αψzz + ψȳȳ = 0,−∞ < z < ∞, 0 ≤ ȳ ≤ 1 + αη̂(z, τ), (32)

ψȳ = α(−η̂z + αη̂τ + αψz η̂z), on ȳ = 1 + αη̂(z, τ), (33)

η̂ − ψz + αψτ +
1

2
(αψ2

z + ψ2
ȳ) = 0, on ȳ = 1 + αη̂(z, τ), (34)

ψȳ = 0, on ȳ = 0. (35)

Now, we use the asymptotic expansion of the form:

ψ = ψ0 + αψ1 + α2ψ2 +O(α2), (36)

η̂ = η̂0 + αη̂1 +O(α). (37)

Substituting relation (36) in the equations (32) and (35), we get

O(α0) : ψ0,ȳȳ = 0 ⇒ ψ0 = B0(z, τ), (38)

O(α) : ψ1,ȳȳ = −ψ0,zz ⇒ ψ1 = −1

2
ȳ2B0,zz +B1(z, τ), (39)

O(α2) : ψ2,ȳȳ = −ψ1,zz ⇒ ψ2 =
1

24
ȳ4B0,zzzz − 1

2
ȳ2B1,zz +B2(z, τ). (40)

Using the expansion forms (36) and (37), the Bernoulli equation (34), at leading
order, gives:

O(α0) : η̂0(z, τ) = ψ0,z = B0,z , (41)

O(α) : η̂1 −B1,z +
1

2
B0,zzz +B0,τ +

1

2
B2

0,z = 0, (42)
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and the Kinematic boundary condition (33) gives:

O(α2) : −η̂0B0,zz +
1

6
B0,zzzz −B1,zz + η̂1,z − η̂0,τ −B0,z η̂0,z = 0. (43)

By the help of the equation (42), we can eliminate η̂1 and B1 from the equation
(43) and hence, we can write:

−η̂0B0,zz − 1

3
B0,zzzz −B0,zτ −B0,zB0,zz = η̂0,τ +B0,z η̂0,z. (44)

Finally, from the relations (41) and (44), we get

2η̂0,τ + 3η̂0η̂0,z +
1

3
η̂0,zzz = 0. (45)

which is named as Korteweg-de Vries (KdV) Equation.
In the equation (45), we can write η̂0,τ as

η̂0,τ =
ε

α3/2
η̂0,t̄ −

1

α
η̂0,z. (46)

So, in the case of time independent problem, the KdV equation (45) reduces to

−1

α
η̂0,z +

3

2
η̂0η̂0,z +

1

6
η̂0,zzz = 0. (47)

4.2. Problem of one-layer fluid flow over an arbitrary topography.

4.2.1. Formulation of the problem. Consider the fluid flow over an arbitrary

topography. The profile of the topography is given by y = ĥ(x) = ah0(x).
Here we consider the BVP involving the Laplace’s equation (22) and boundary
conditions (23) and (24) with

φy − ĥx(x)φx = 0, on y = ĥ(x). (48)

4.2.2. Derivation of KdV equation. Assuming the same form of η(x, t) as
above and using the same dimensionless variables as given in the relation (26),
we get a system involving the equations (27)-(29) with

ε−2φ̄ȳ − αh0,x(x)φ̄x̄ = 0, on ȳ = αh0(x̄). (49)

Considering the transformation as defined by the relation (31), we get BVP
involving the equations (32)-(34) with

ψȳ − α2h0,zψz = 0, on ȳ = αh0(z). (50)

Now, using the same asymptotic expansion of ψ given by the relation (36) in the
relations (32) and (50) and then solving, we get

O(α0) : ψ0,ȳȳ = 0 ⇒ ψ0 = B0(z, τ), (51)

O(α) : ψ1,ȳȳ = −ψ0,zz ⇒ ψ1 = −1

2
ȳ2B0,zz +B1(z, τ), (52)

O(α2) : ψ2,ȳȳ = −ψ1,zz ⇒ ψ2 =
ȳ4

24
B0,zzzz − ȳ2

2
B1,zz + ȳh0,zB0,z +B2(z, τ). (53)
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Using the asymptotic expansion of η given by the relations (37), the Bernoulli
equation (34) gives (at leading order) :

O(α0) : η̂0(z, τ) = ψ0,z = B0,z , (54)

O(α) : η̂1 −B1,z +
1

2
B0,zzz +B0,τ +

1

2
B2

0,z = 0, (55)

and the Kinematic boundary condition (33) gives:

O(α2) : −η̂0B0,zz+
1

6
B0,zzzz−B1,zz+h0,zB0,z+ η̂1,z− η̂0,τ −B0,z η̂0,z = 0. (56)

Using equation (55) in the equation (56), we can write:

−η̂0B0,zz − 1

3
B0,zzzz −B0,zτ −B0,zB0,zz + h0,zB0,z − η̂0,τ −B0,z η̂0,z = 0. (57)

Now, from the relations (54) and (57), we get

2η̂0,τ + 3η̂0η̂0,z +
1

3
η̂0,zzz − h0,z η̂0 = 0. (58)

which is called a Generalized Korteweg-de Vries Equation.

It is observed that, in the particular case, when there is no hump i.e. ĥ(x) = 0,
the generalized KdV equation (58) gives rise to the KdV equation (45) for the
flow in a channel without hump.

In the time-independent case, the generalized KdV equation (58) reduces to
[see relation (46)]:

−1

α
η̂0,z +

3

2
η̂0η̂0,z +

1

6
η̂0,zzz − 1

2
η̂0h0,z = 0. (59)

4.3. Problem of Two-layer fluid flow (upper fluid layer is bounded by
a rigid lid.

4.3.1. Formulation of the problem. The irrotational flow of two layers of
incompressible inviscid fluids of different densities over a hump is considered.
The upper fluid layer is bounded by a rigid lid. The interface between the two
fluids is given by y = H2 + η(x, t) = H2 + aη̂(x, t) and the profile of the hump

is given by y = ĥ(x) = ah0(x). The governing equations are the following:

∇2φ1 = 0, −∞ < x < ∞, H2 + η(x, t) ≤ y ≤ H1 +H2, (60)

∇2φ2 = 0, −∞ < x < ∞, ĥ(x) ≤ y ≤ H2 + η(x, t), (61)

φ1,y = 0, on y = H1 +H2, (62)

φ2,y − ĥx(x)φ2,x = 0, on y = ĥ(x). (63)

φ1,y = ηt + ηxφ1,x, on y = H2 + η(x, t), (64)

φ2,y = ηt + ηxφ2,x, on y = H2 + η(x, t), (65)

(φ2,t −Dφ1,t) +
1

2

[
φ2
2,x + φ2

2,y −D(φ2
1,x + φ2

1,y)
]
+ gη(1−D)

= B2(t)−DB1(t)− gH2(1−D), on y = H2 + η(x, t), (66)
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where D = ρ1/ρ2.

4.3.2. Derivation of KdV equation. Using the same dimensionless variables
x̄, ȳ, t̄ as given by the relation (26) with

φ̄j =
H2φj

λa
√
gH2

, (j = 1, 2), δ =
H1

H2
, (67)

we get the system as:

ε2φ̄1,x̄x̄ + φ̄1,ȳȳ = 0, −∞ < x̄ < ∞, 1 + αη̂(x̄, t̄) ≤ ȳ ≤ 1 + δ, (68)

ε2φ̄2,x̄x̄ + φ̄2,ȳȳ = 0, −∞ < x̄ < ∞, αh0(x̄) ≤ ȳ ≤ 1 + αη̂(x̄, t̄), (69)

φ̄1,y = 0, on ȳ = 1 + δ, (70)

ε−2φ̄2,ȳ − αh0,x(x)φ̄2,x̄ = 0, on ȳ = αh0(x̄). (71)

φ̄1,ȳ = ε2(η̂t̄ + αφ̄1,x̄η̂x̄), on ȳ = 1 + αη̂(x̄, t̄) (72)

φ̄2,ȳ = ε2(η̂t̄ + αφ̄2,x̄η̂x̄), on ȳ = 1 + αη̂(x̄, t̄) (73)

(φ̄2,t̄ −Dφ̄1,t̄) +
α

2

[
φ̄2
2,x̄ + ε−2φ̄2

2,ȳ −D
{
φ̄2
1,x̄ + ε−2φ̄2

1,ȳ

}]
+ η̂(1−D)

= C2(t)−DC1t, on ȳ = 1 + αη̂(x̄, t̄) (74)

where

C2(t) =
B2(t)− gH2(1−D)

ag
, C1(t) =

B1(t)

ag
, ε =

H2

λ
, α =

a

H2
.

Considering the transformations as defined by the relation (31) with ψj =
α1/2

ε

[
φ̄j −

∫ t̄

0
Cj(s)ds

]
, we get

αψ1,zz + ψ1,ȳȳ = 0,−∞ < z < ∞, 1 + αη̂(z, τ) ≤ ȳ ≤ 1 + δ, (75)

αψ2,zz + ψ2,ȳȳ = 0,−∞ < z < ∞, αh0(z) ≤ ȳ ≤ 1 + αη̂(z, τ), (76)

ψ1,ȳ = 0, on ȳ = 1 + δ, (77)

ψ2,ȳ − α2h0,zψ̄2,z = 0, on ȳ = αh0(z), (78)

ψ1,ȳ = α(−η̂z + αη̂τ + αψ1,z η̂z), on ȳ = 1 + αη̂(z, τ), (79)

ψ2,ȳ = α(−η̂z + αη̂τ + αψ2,z η̂z), on ȳ = 1 + αη̂(z, τ), (80)

α(ψ2,τ −Dψ1,τ )− (ψ2,z −Dψ1,z) +
1

2

[
αψ2

2,z + ψ2
2,ȳ −D

{
αψ2

1,z + ψ2
1,ȳ

}]

+η̂(1−D) = 0, on ȳ = 1 + αη̂(z, τ). (81)

Now we use the same asymptotic expansion of η̂ as given by the relation (37)
and

ψi = ψi0 + αψi1 + α2ψi2 +O(α2), i = 1, 2 (82)

in the relations (75) - (81), we get the following BVPs:
O(α0) :

ψ10,ȳȳ = 0, −∞ < z < ∞, 1 ≤ ȳ ≤ 1 + δ, (83a)

ψ10,ȳ = 0, on ȳ = 1 + δ, (83b)

ψ10,ȳ = 0, on ȳ = 1, (83c)
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and

ψ20,ȳȳ = 0, −∞ < z < ∞, 0 ≤ ȳ ≤ 1, (84a)

ψ20,ȳ = 0, on ȳ = 1, (84b)

ψ20,ȳ = 0, on ȳ = 0, (84c)

O(α) :

ψ11,ȳȳ + ψ10,zz = 0, −∞ < z < ∞, 1 ≤ ȳ ≤ 1 + δ, (85a)

ψ11,ȳ = 0, on ȳ = 1 + δ, (85b)

ψ11,ȳ + η̂0ψ10,ȳȳ = −η̂0,z, on ȳ = 1, (85c)

and

ψ21,ȳȳ + ψ20,zz = 0, −∞ < z < ∞, 0 ≤ ȳ ≤ 1, (86a)

ψ21,ȳ + η̂0ψ20,ȳȳ = −η̂0,z, on ȳ = 1, (86b)

ψ21,ȳ = 0, on ȳ = 0, (86c)

O(α2) :

ψ12,ȳȳ + ψ11,zz = 0, −∞ < z < ∞, 1 ≤ ȳ ≤ 1 + δ, (87a)

ψ12,ȳ = 0, on ȳ = 1 + δ, (87b)

ψ12,ȳ + η̂0ψ11,ȳȳ + η̂1ψ10,ȳȳ +
1

2
η̂0ψ10,ȳȳȳ = η̂0,τ − η̂1,z + η̂0,zψ10,z, on ȳ = 1, (87c)

and

ψ22,ȳȳ + ψ21,zz = 0, −∞ < z < ∞, 0 ≤ ȳ ≤ 1, (88a)

ψ22,ȳ = h0,zψ20,z, on ȳ = 0, (88b)

ψ22,ȳ + η̂0ψ21,ȳȳ + η̂1ψ20,ȳȳ +
1

2
η̂0ψ20,ȳȳȳ = η̂0,τ − η̂1,z + η̂0,zψ20,z, on ȳ = 1. (88c)

From the equations (83a)-(83c), ψ10 can be found as

ψ10 = B0(z, τ). (89)

We can determine ψ11 and B0,zz from the equations (85a)-(85c):

ψ11 = −B0,zz

[
ȳ2

2
− ȳ(1 + δ)

]
+B1(z, τ), (90)

with B0,zz =
−1

δ
η̂0,z. (91)

From the equations (87a)-(87c), we obtain

ψ12 =
−1

δ
η̂0,zzz

{
ȳ4

24
− (1 + δ)

ȳ3

6
+

(1 + δ)3

3
ȳ

}

−B1,zz

{
ȳ2

2
− (1 + δ)ȳ

}
+B2(z, τ) (92a)

B1,zz =
1

δ

[
B0,z η̂0,z + η̂0,τ − η̂1,z − η̂0

δ
η̂0,z
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+
1

δ

{
1

6
− (1 + δ)

2
+

(1 + δ)3

3

}
η̂0,zzz

]
. (92b)

Similarly, from equations (84a)-(84c) and (86a)-(86c), we obtain, respectively,

ψ20 = A0(z, τ), (93a)

ψ21 = −A0,zz
ȳ2

2
+A1(z, τ), (93b)

with A0,zz = η̂0,z. (93c)

From the equations (88a)-(88c), we obtain

ψ22 = η̂0,zzz
ȳ4

24
−A1,zz

ȳ2

2
+A0,zh0,z ȳ +A2(z, τ) (94a)

with A1,zz = A0,z (h0,z − η̂0,z) +
1

6
η̂0,zzz − η̂0η̂0,z − η̂0,τ + η̂1,z. (94b)

From the interface condition (81), we get

O(α0) : A0,z −DB0,z = (1−D)η̂0. (95a)

O(α) : A0,τ −DB0,τ − {−η̂0,zz
y2

2
+A1,z}+D

[
1

σ
η̂0,zz

{
y2

2
− (1 + δ)ȳ

}

+B1,z

]
+

1

2
{A2

0,z −DB2
0,z}+ (1−D)η̂1 = 0, on ȳ = 1. (95b)

From the relations (91), (93c) and (95b), we obtain (neglecting η̂1,z):

2

(
1 +

D

σ

)
η̂0,τ +

[
1

3
− D(1 + 2σ)

2σ
+

D

σ2

{
1

6
− (1 + σ)

2
+

(1 + σ)3

3

}]
η̂0,zzz

+3

(
1− D

σ2

)
η̂0η̂0,z = η̂0h0,z. (96)

which is the generalized Korteweg-de Vries equation, for this problem.
From the equations (91), (93c) and (95a), we conclude that these equations

will be satisfied only when η̂ = 0.
In particular, when there is no upper layer i.e., when D = 0, the generalized

KdV equation (96) exactly matches with the KdV equation (58) for the flow
over an arbitrary topography in a channel.

4.4. Problem of Two-layer fluid flow ( the top surface of the upper
fluid layer is a free surface).

4.4.1. Formulation of the problem. The irrotational flow of two layers of
incompressible inviscid fluids of different densities over a hump is considered.
The top surface of the upper fluid layer is free to the atmosphere, given by,
y = H1 + H2 + η1(x, t) = H1 + H2 + aη̂1(x, t). The interface between the two
fluid is given by y = H2 + η2(x, t) = H2 + aη̂2(x, t) and the profile of the hump

is given by y = ĥ(x) = ah0(x). The governing equations are the following:

∇2φ1 = 0, −∞ < x < ∞, H2 + η2(x, t) ≤ y ≤ H1 +H2 + η1(x, t), (97a)

∇2φ2 = 0, −∞ < x < ∞, ĥ(x) ≤ y ≤ H2 + η2(x, t), (97b)
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φ1,y = η1,t + η1,xφ1,x, on y = H1 +H2 + η1(x, t), (97c)

φ1,t +
1

2

[
φ2
1,x + φ2

1,y

]
+ g(H1 +H2 + η1) = B3(t),

on y = H1 +H2 + η1(x, t), (97d)

with the equations (63) on the bottom y = ĥ(x), and (64), (65) and (66) on
y = H2 + η2(x, t).

4.4.2. Derivation of KdV equation. Using the same dimensionless variables
x̄, ȳ, t̄ as given by the relation (26) with φ̄j , (j = 1, 2), given by the relation (67),
we get the system as:

ε2φ̄1,x̄x̄ + φ̄1,ȳȳ = 0, −∞ < x̄ < ∞, 1 + αη̂2(x̄, t̄) ≤ ȳ ≤ 1 + δ + αη̂1(x̄, t̄), (98a)

ε2φ̄2,x̄x̄ + φ̄2,ȳȳ = 0, −∞ < x̄ < ∞, αh0(x̄) ≤ ȳ ≤ 1 + αη̂2(x̄, t̄), (98b)

φ̄1,ȳ = ε2(η̂1,t̄ + αφ̄1,x̄η̂1,x̄), on ȳ = 1 + δ + αη̂1(x̄, t̄) (98c)

φ̄1,t̄ +
α

2

[
φ̄2
1,x̄ + ε−2φ̄2

1,ȳ

]
+ η̂1 = C3(t), on ȳ = 1 + δ + αη̂1(x̄, t̄), (98d)

with the equations (71) on ȳ = αh0(x̄), (72), (73) and (74) on ȳ = 1+αη̂2(x, t),
where

C3(t) =
B3(t)− g(H1 +H2)

ag
.

Considering the transformation as defined by the relation (31) with

ψ1 =





α1/2

ε

[
φ̄1 −

∫ t̄

0
C3(s)ds

]
, when ȳ = 1 + δ + αη̂1(x̄, t̄)

α1/2

ε

[
φ̄1 −

∫ t̄

0
C1(s)ds

]
, when ȳ = 1 + αη̂2(x̄, t̄)

(99a)

ψ2 =
α1/2

ε

[
φ̄2 −

∫ t̄

0

C2(s)ds

]
, (99b)

we get

αψ1,zz + ψ1,ȳȳ = 0,−∞ < z < ∞, 1 + αη̂2(z, τ) ≤ ȳ ≤ 1 + δ + αη̂1(z, τ), (100a)

αψ2,zz + ψ2,ȳȳ = 0,−∞ < z < ∞, αh0(z) ≤ ȳ ≤ 1 + αη̂2(z, τ), (100b)

ψ1,ȳ = α(−η̂1,z + αη̂1,τ + αψ1,z η̂1,z), on ȳ = 1 + δ + αη̂1(z, τ), (100c)

αψ1,τ − ψ1,z +
1

2

[
αψ2

1,z + ψ2
1,ȳ

]
+ η̂1 = 0, on ȳ = 1 + δ + αη̂1(z, τ), (100d)

with equations (78) on ȳ = αh0(z), and equations (79), (80) and (81) on ȳ =
1 + αη̂2(z, τ).

Now using the same asymptotic expansion of η̂ as given by the relation (37)
for η̂1 and η̂2 and ψi(i = 1, 2), given by the above relation (82), in the above
relations, we get the following BVPs:
O(α0) :

ψ10,ȳȳ = 0, −∞ < z < ∞, 1 ≤ ȳ ≤ 1 + δ, (101a)

ψ10,ȳ = 0, on ȳ = 1 + δ, (101b)

η̂10 − ψ10,z +
1

2
ψ2
10,ȳ = 0, on ȳ = 1 + δ, (101c)

ψ10,ȳ = 0, on ȳ = 1, (101d)
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and
ψ20,ȳȳ = 0, −∞ < z < ∞, 0 ≤ ȳ ≤ 1, (102a)

ψ20,ȳ = 0, on ȳ = 1, (102b)

ψ20,ȳ = 0, on ȳ = 0, (102c)

O(α) :
ψ11,ȳȳ + ψ10,zz = 0, −∞ < z < ∞, 1 ≤ ȳ ≤ 1 + δ, (103a)

ψ11,ȳ + η̂10ψ10,ȳȳ = −η̂10,z, on ȳ = 1 + δ, (103b)

η̂11 − ψ11,z − η̂10ψ10,zȳ + ψ10,τ + ψ10,ȳ{ψ11,ȳ + η̂10ψ10,ȳȳ}
+
1

2
ψ2
10,z = 0, on ȳ = 1 + δ, (103c)

ψ11,ȳ + η̂20ψ10,ȳȳ = −η̂20,z, on ȳ = 1, (103d)

and
ψ21,ȳȳ + ψ20,zz = 0, −∞ < z < ∞, 0 ≤ ȳ ≤ 1, (104a)

ψ21,ȳ + η̂20ψ20,ȳȳ = −η̂20,z, on ȳ = 1, (104b)

ψ21,ȳ = 0, on ȳ = 0, (104c)

O(α2) :

ψ12,ȳȳ + ψ11,zz = 0, −∞ < z < ∞, 1 ≤ ȳ ≤ 1 + δ, (105a)

ψ12,ȳ + η̂10ψ11,ȳȳ + η̂11ψ10,ȳȳ +
1

2
η̂10ψ10,ȳȳȳ = η̂10,τ − η̂11,z + η̂10,zψ10,z,

on ȳ = 1 + δ, (105b)

ψ11,τ − ψ12,z − η̂10ψ11,zȳ + η̂10ψ11,z +
1

2
ψ2

11,ȳ = 0, , on ȳ = 1 + δ, (105c)

ψ12,ȳ + η̂20ψ11,ȳȳ + η̂21ψ10,ȳȳ +
1

2
η̂20ψ10,ȳȳȳ = η̂20,τ − η̂21,z + η̂20,zψ10,z,

on ȳ = 1, (105d)

and ψ22,ȳȳ + ψ21,zz = 0, −∞ < z < ∞, 0 ≤ ȳ ≤ 1, (106a)

ψ22,ȳ = h0,zψ20,z, on ȳ = 0, (106b)

ψ22,ȳ + η̂20ψ21,ȳȳ + η̂21ψ20,ȳȳ +
1

2
η̂20ψ20,ȳȳȳ

= η̂20,τ − η̂21,z + η̂20,zψ20,z, on ȳ = 1. (106c)

From the equations (101a)-(101d), ψ10 can be found as

ψ10 = B0(z, τ), (107)

with B0,z = η̂10. (108)

We can determine ψ11 from the equations (103a)-(103d):

ψ11 = −η̂10,z

[
ȳ2

2
− δȳ

]
+B1(z, τ), (109a)

with η̂10,z =
1

1− δ
η̂20,z, (109b)

and B1,zz = η̂11,z + η̂10,τ + η̂10η̂10,z +
(1− δ2)

2
η̂10,zzz. (109c)
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From the equations (105a)-(105d), we obtain

(δ + 1)η̂10,τ − η̂20,τ − η̂20η̂10,z + (δ + 2)η̂10η̂10,z − η̂10η̂20,z +
{1

6
+

δ

2

×(1 + δ)2 − δ

2
− (1 + δ)3

6
+

δ(1− δ2)

2

}
η̂10,zzz + (δ − 1)η̂11,z + η̂21,z = 0. (110)

Similarly, from equations (102a)-(102c) and (104a)-(104c), we obtain, respec-
tively,

ψ20 = A0(z, τ), (111a)

ψ21 = −A0,zz
ȳ2

2
+A1(z, τ), (111b)

with A0,zz = η̂20,z. (111c)

Similarly, from the equations (106a)-(106c), we obtain

ψ22 = η̂20,zzz
ȳ4

24
−A1,zz

ȳ2

2
+A0,zh0,z ȳ +A2(z, τ), (112a)

with A1,zz = A0,z (h0,z − η̂20,z) +
1

6
η̂20,zzz − η̂20η̂20,z − η̂20,τ + η̂21,z. (112b)

From the interface condition (pressure continuity condition: relation (81)) on
ȳ = 1 + αη̂2(z, τ), we get

O(α0) : A0,z −DB0,z = (1−D)η̂20, (113a)

O(α) : A0,τ −DB0,τ −
(−1

2
η̂20,zz +A1,z

)
+D

[
−
(
1

2
− σ

)
η̂10,zz +B1,z

]

+
1

2
(A2

0,z −DB2
0,z) + (1−D)η̂21 = 0. (113b)

Hence, from the equations (108), (111c) and (113b), we obtain (neglecting η̂11,z
and η̂21,z):

2η̂20,τ +D(η̂10,τ − η̂20,τ ) +
1

3
η̂20,zzz +D

{
1− δ2

2
− 1

2
+ δ

}
η̂10,zzz

+3η̂20η̂20,z = η̂20h0,z, (114)

which is the generalized Korteweg-de Vries equation, for this problem.
In the absence of the upper layer of fluid i.e., D = 0, the generalized KdV

equation (114) exactly matches with the KdV equation (58) for the flow over an
arbitrary topography in a channel.

Notes.

(1) With the help of the relation (109b), the equation (110) gives rise to an
equation for η̂10 and the equation (114) gives rise to an equation for η̂20.

(2) From the relations (108), (109b), (111c) and (113a), we conclude that
these equations will be valid only when δ is very very small.
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(3) When δ is very very small, the equation (110) is satisfied and the equa-
tion (114) gives rise to the KdV equation (58) for the flow over a hump
in a channel.

4.5. Solution of the KdV equations.

4.5.1. KdV equation of type-1 (constant coefficients). Let the KdV
equation be of the form

A0η̂0,τ (z, τ) +A1η̂0η̂0,z +A2η̂0,zzz = 0. (115a)

For the solution, one can assume that

η̂0(z, τ) = u(z − βτ) = u(ξ), (115b)

where
ξ = z − βτ. (115c)

Substituting the relation (115b) in the KdV equation (115a), we get

−A0β
∂u

∂ξ
+A1u

∂u

∂ξ
+A2

∂3u

∂ξ3
= 0, (116a)

whose solution can be determined as (see Whitham [14])

u =
3A0β

A1
sech2

(
ξ

2

√
βA0

A2

)
, (116b)

=
3A0β

A1

[
1− A0β

4A2
ξ2 +

1

24

(
A0β

A2

)2

ξ4 − . . .

]
. (116c)

We finally get from the relation (116b):

η̂0(z, τ) =
3A0β

A1
sech2

(
1

2

√
βA0

A2
(z − βτ)

)
. (116d)

Alternatively, let

u(ξ) =

∞∑
n=0

anξ
n, (116e)

be a solution of the equation (116a), where an’s are constants to be determined.

Substituting the relation (116e) in the equation (116a) and equating the co-
efficients of ξ0, ξ, ξ2, . . ., we get

a3 =
1

6A2
[A0βa1 −A1a0a1]

a4 =
1

24A2
[2A0βa2 −A1(a

2
1 + 2a0a2)]

a5 =
1

60A2
[3A0βa3 −A1(3a1a2 + a0a3)]

...
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Choosing a0 = 3A0β
A1

, a1 = 0 and a2 = −3
4

A2
0β

2

A1A2
, we obtain

a3 = 0, and a4 =
1

8

A3
0β

3

A1A2
2

,

which exactly match with the coefficients of ξ3 and ξ4 respectively of the relation
(116c).

Particular case. Substituting A0 = 2, A1 = 3 and A2 = 1
3 in the relation (116b)

or in the relation (116c), we get the solution of the KdV equation (45).

4.5.2. KdV Equation of type-2 (variable coefficients). Let the KdV
equation be of the form

A0η̂0,τ (z, τ) +A1η̂0η̂0,z +A2η̂0,zzz − η̂0h0,z(z) = 0. (117a)

whose solution has to be determined for a known bottom profile h0(z), which is
a variable quantity.

For the solution, we assume that there is a series solution of the form given
by the relation (116e), where an’s are constants to be determined.

Now for a known bottom profile as given by

h0(z) = b sin lz, (117b)

substituting the relation (116e) in the equation (117a) and equating the coeffi-
cients of ξ3, ξ4 ξ5, . . ., we get:

a3 =
1

6A2
[A0βa1 −A1a0a1 + bl(a0 − l

2
a3
0)], (117c)

a4 =
1

24A2
[2A0βa2 −A1(a

2
1 + 2a0a2) + bl(a1 − 3l

2
a2
0a1)], (117d)

a5 =
1

60A2
[3A0βa3 −A1(3a1a2 + a0a3) + bl(a2 − 3l

2
(a2

0a2 + a0a
2
1))], (117e)

...

Setting

a0 = 1, a1 = 0 and a2 =
−3

4

A2
0β

2

A1A2
, (117f)

we get the values of a3, a4, a5, . . . and hence a special series solution of the
equation (117a) can be determined.

Particular case. Substituting A0 = 2, A1 = 3 and A2 = 1
3 in the above relation

(117c)-(117f), we get the series solution (116e) of the KdV equation (58).
By utilizing similar ideas we can obtain the series solutions of the type (116e)

of the two generalized KdV equations (96) and (114) derived above. Work in
this direction is in progress.
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