DOI QR코드

DOI QR Code

재조합 생촉매를 이용한 Diazinon 제거

Removal of Diazinon Using Recombinant Biocatalyst

  • 최석순 (세명대학교 바이오환경공학과) ;
  • 서상환 (세명대학교 바이오환경공학과) ;
  • 강동균 (포항공과대학교 화학공공학과) ;
  • 차형준 (포항공과대학교 화학공공학과) ;
  • 권인찬 (버지니아대학교 화학공학과)
  • Choi, Suk Soon (Department of Biological and Environmental Engineering, Semyung University) ;
  • Seo, Sang Hwan (Department of Biological and Environmental Engineering, Semyung University) ;
  • Kang, Dong Gyun (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Cha, Hyung Joon (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Kwon, Inchan (Department of Chemical Engineering, University of Virginia)
  • 투고 : 2011.07.12
  • 심사 : 2011.08.03
  • 발행 : 2011.10.10

초록

본 연구에서는 대장균 세포 표면에서 발현되는 유기인분해효소(organophosphorus hydrolase; OPH)를 이용하여 난분해성 및 환경독성물질로 알려진 diazinon의 효과적 처리가 이루어졌다. 이 실험에서는 $25^{\circ}C$ 배양 온도와 배지에 0.2 mM ethylenediamine tetraacetate (EDTA) 첨가 조건이 유기인분해 효소 생산에 효과적임을 알 수 있었다. 이 조건에서 성장한 대장균을 이용하여 초음파 파쇄공정이 수행되었을 때, 25, 50 mg/L diazinon는 각각 4.5, $7.2mg/g{\cdot}min$의 diazinon 제거 속도를 나타내었고, 두 농도(25, 50 ppm) 모두 90% 이상 제거 효율을 구할 수 있었다. 따라서 이러한 실험 결과들은 diazinon과 같은 독성 화합물을 친환경적으로 처리할 수 있는 생물학적 처리 시스템으로 활용될 수 있을 것이다.

In the present work, diazinon which is known as nondegradable and environmental toxic material was efficiently treated by the cell surface-displayed organophosphorus hydrolase (OPH) biocatalyst. The culture temperature of $25^{\circ}C$ culture temperature and the addition of 0.2 mM ethylenediamine tetraacetate (EDTA) were effective conditions for the production of recombinant OPH in Escherichia coli. 25 and 50 ppm diazinon were treated with removal rate of 4.5 and $7.2mg/g{\cdot}min$, respectively and with all over 90% removal efficiencies using recombinant cell lysates through ultrasonication disruption process. Thus, these experimental results could be utilized in environmental friendly biological treatment system for toxic chemicals such as diazinon.

키워드

참고문헌

  1. M. A. Matouq, Z. A. Al-Anber, T. Tagawa, S. Aljbour, and M. Al-Shannang, Ultrasonics Sonochemistry, 15, 869 (2008). https://doi.org/10.1016/j.ultsonch.2007.10.012
  2. A. A. Basfar, K. A. Mohamed, A. J. Al-Abduly, T. S. Al-kuraiji, and A. A. Al-Shahrani, Radiation Phys. Chem., 76, 1474 (2007). https://doi.org/10.1016/j.radphyschem.2007.02.055
  3. N. Daneshvar, S. Aber, M. S. Seyed Dorraji, A. R. Khataee, and M. H. Rasoulifard, Separation and Purification Technology, 58, 91 (2007). https://doi.org/10.1016/j.seppur.2007.07.016
  4. H. Shemer and K. G. Linden, J. Hazardous Mater. B, 136, 553 (2006). https://doi.org/10.1016/j.jhazmat.2005.12.028
  5. P. C. H. Li, E. J. Swanson, and F. A. P. C. Gogas, Bull. Environ. Contam. Toxicol., 69, 59 (2002). https://doi.org/10.1007/s00128-002-0010-0
  6. W. Chen and A. Mulchandani, Trends in Biotechnol., 16, 71 (1998). https://doi.org/10.1016/S0167-7799(97)01160-8
  7. Y. Ku and H.-S. Lin, Water Res., 36, 4145 (2002).
  8. M. I. Badawy, M. Y. Ghaly, and T. A. Gad-Allah, Desalination, 194, 166 (2006). https://doi.org/10.1016/j.desal.2005.09.027
  9. S. Chen, D. Sun, and J.-S. Chung, J. Hazardous Mater., 144, 577 (2007). https://doi.org/10.1016/j.jhazmat.2006.10.075
  10. C. S. McDaniel, L. L. Harper, and J. R. Wild, J. Bacteriol., 170, 2306 (1998).
  11. W. W. Mulbury and J. S. Karns, J. Bacteriol., 171, 6740 (1998).
  12. S. Chiron, A. Fernandez-Alba, A. Rodriguez, and E. Garcia-Calvo, Water Res., 34, 366 (2000). https://doi.org/10.1016/S0043-1354(99)00173-6
  13. L. li, D. G Kang, and H. J. Cha, Biotechnol. Bioeng., 85, 214 (2004). https://doi.org/10.1002/bit.10892
  14. J. K. Grimslery, J. M. Scholtz, C. N. Psce, and J. R. Wild, Biochemistry, 36, 14366 (1997). https://doi.org/10.1021/bi971596e