DOI QR코드

DOI QR Code

Electromagnetic Interference Shielding Behaviors of Electroless Nickel-loaded Carbon Fibers-reinforced Epoxy Matrix Composites

무전해 니켈도금된 탄소섬유강화 에폭시기지 복합재료의 전자파 차폐특성

  • Hong, Myung-Sun (Carbon Valley R&D Division, Jeonju Institute of Machinery and Carbon Composites) ;
  • Bae, Kyong-Min (Department of Chemistry, Inha University) ;
  • Lee, Hae-Seong (Department of Nano Advanced Materials Engineering, Jeonju University) ;
  • Park, Soo-Jin (Department of Chemistry, Inha University) ;
  • An, Kay-Hyeok (Carbon Valley R&D Division, Jeonju Institute of Machinery and Carbon Composites) ;
  • Kang, Shin-Jae (Carbon Valley R&D Division, Jeonju Institute of Machinery and Carbon Composites) ;
  • Kim, Byung-Joo (Carbon Valley R&D Division, Jeonju Institute of Machinery and Carbon Composites)
  • 홍명선 (전주기계탄소기술원 탄소밸리사업단) ;
  • 배경민 (인하대학교 화학과) ;
  • 이해성 (전주대학교 나노신소재과) ;
  • 박수진 (인하대학교 화학과) ;
  • 안계혁 (전주기계탄소기술원 탄소밸리사업단) ;
  • 강신재 (전주기계탄소기술원 탄소밸리사업단) ;
  • 김병주 (전주기계탄소기술원 탄소밸리사업단)
  • Received : 2011.08.29
  • Accepted : 2011.10.13
  • Published : 2011.12.10

Abstract

In this work, carbon fibers were electrolessly Ni-plated in order to investigate the effect of metal plating on the electromagnetic shielding effectiveness (EMI-SE) of Ni-coated carbon fibers-reinforced epoxy matrix composites. The surfaces of carbon fibers were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Electric resistance of the composites was tested using a 4-point-probe electric resistivity tester. The EMI-SE of the composites was evaluated by means of the reflection and adsorption methods. From the results, it was found that the EMI-SE of the composites enhanced with increasing Ni plating time and content. In high frequency region, the EMI-SE didn't show further increasing with high Ni content (Ni-CF 10 min) compared to the Ni-CF 5 min sample. In conclusion, Ni content on the carbon fibers can be a key factor to determine the EMI-SE of the composites, but there can be an optimized metal content at a specific electromagnetic frequency region in this system.

연구에서는 니켈 함량에 탄소섬유강화 에폭시 기지 복합재료의 전자파 차폐효과에 대해 고찰을 위해 탄소섬유표면에 시간의 변수에 따른 무전해 도금을 실시하였다. 탄소섬유 표면의 특성은 주사전자현미경과 X-선광전자분광법으로 측정하였고 전기적 특성은 4단자법으로 분석을 진행하였다. 복합재료의 전자파 차폐효과는 흡수와 반사 두 가지 방법으로 분석을 진행하였다. 실험 결과로부터 전자파 차폐효과는 탄소섬유 표면에 코팅된 니켈 함량이 증가됨에 따라 순차적으로 증가되는 것이 확인되었으나, 고주파 영역에서는 과량의 니켈 도금이 더 이상의 전자파 차폐효율을 증가시키지 않는 것이 확인되었다. 결론적으로 니켈 함량이 탄소섬유 복합재료의 전자파 차폐효과를 결정하는 요소가 될 수 있다고 판단되나, 특정 주파수마다 최적화된 금속도입 함량에 대한 변수가 있을 수 있다고 판단된다.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. B. R. Kim, H. K. Lee, S. H. Park, and H. K. Kim, Thin Solid Films, 519, 3496 (2011).
  2. A. A. Al-Ghamdi and F. E. Tantawy, Comp. Part A : Appl. Sci. Manuf., 41, 1693 (2010).
  3. C. S. Chen, W. R. Chen, S. C. Chen, and R. D. Chien, Int. Commun. Heat. Mass., 35, 744 (2008). https://doi.org/10.1016/j.icheatmasstransfer.2008.02.006
  4. C. Y. Huang, W. W. Mo, and M. L. Roan, Surf. Coat. Tech., 184, 123 (2004). https://doi.org/10.1016/j.surfcoat.2003.11.009
  5. Y. Y. Kim, J. Yun, Y. S. Lee, and H. I. Kim, Carbon Lett., 12, 48 (2011). https://doi.org/10.5714/CL.2011.12.1.048
  6. B. O. Lee, W. J. Woo, H. S. Song, H. S. Park, H. S. Hahm, J. P. Wu, and M. S. Kim, J. Ind. Eng. Chem., 7, 305 (2011).
  7. H. M. Musal and H. T. Hahn, IEEE Trans. on Magn., 25, 3851 (1989). https://doi.org/10.1109/20.42454
  8. Q. Liu, D. Zhang, T. Fan, J. Gu, Y. Miyamoto, and Z. Chen, Carbon, 46, 461 (2008). https://doi.org/10.1016/j.carbon.2007.12.010
  9. Y. Huang, N. Li, Y. Ma, F. Du, F. Du, F. Li, and X. He, Carbon, 45, 1614 (2007). https://doi.org/10.1016/j.carbon.2007.04.016
  10. Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Li, and T. Guo, Carbon, 45, 821 (2007). https://doi.org/10.1016/j.carbon.2006.11.020
  11. S. Bhadra, N. K. Singha, and D. Khastgir, Curr. Appl. Phys., 9, 396 (2009). https://doi.org/10.1016/j.cap.2008.03.009
  12. M. S. Cao, W. L. Song, Z. L. Hou, B. Wen, and J. Yuan, Carbon, 48, 796 (2010).
  13. S. J. Park, M. H. Kim, J. R. Lee, and S. W. Choi, J. Colloid Interface Sci., 228, 287 (2000). https://doi.org/10.1006/jcis.2000.6953
  14. S. J. Park and M. S. Cho, Carbon, 38, 1053 (2000). https://doi.org/10.1016/S0008-6223(99)00210-9
  15. J. G. Kim, C. H. Chung, and Y. S. Lee, Appl. Chem. Eng., 22, 143 (2011).
  16. G. Y. Heo, M. K. Seo, S. Y. Oh, K. E. Choi, and S. J. Park, Carbon Lett., 12, 53 (2011). https://doi.org/10.5714/CL.2011.12.1.053
  17. K. Ishino, Electro. Ceram., 19, 22 (1988).
  18. J. Yacubowicz, M. Narkis, and L. Benguigui, Polym. Eng, Sci., 30, 459 (1990). https://doi.org/10.1002/pen.760300806
  19. K. T. Chung, A. Sabo, and A. P. Pica, J. Appl. Phys., 53, 6968 (1992).
  20. K. Y. Park, J. H. Han, S. B. Lee, and J. W. Yi, Comp. Part A : Appl. Sci. Manuf., 42, 572 (2011).
  21. S. J. Park and J. R. Lee, J. Mater. Sci., 33, 647 (1998). https://doi.org/10.1023/A:1004373208656
  22. S. J. Park, B. J. Kim, and J. M. Rhee, Polymer (Korea), 27, 52 (2003).
  23. S. J. Park, Y. S. Jang, and J. R. Lee, Polymer (Korea), 25, 218 (2001).
  24. J. Liu, Y. L. Tian, Y. J. Chen, and J. Y. Liang, Appl, Surf. Sci., 256, 6199 (2010). https://doi.org/10.1016/j.apsusc.2010.03.141
  25. F. Lantelme and A. Seghiouer, J. Appl. Electrochem., 28, 907 (1998). https://doi.org/10.1023/A:1003404118601
  26. T. Kimura, A. Ishiguro, A. Andou, and K. Fujita, J. Power Sources, 85, 149 (2000). https://doi.org/10.1016/S0378-7753(99)00394-8
  27. S. D. Gardner, C. S. K. Singamsetty, G. L. Booth, G. R. He, and C. U. Pittman, Carbon, 33, 587 (1995). https://doi.org/10.1016/0008-6223(94)00144-O
  28. N. M. D. Brown, J. A. Hewitt, and B. J. Meeanan, Surf. Interface Anal., 18, 187 (1992). https://doi.org/10.1002/sia.740180304
  29. N. S. Mcintyre and M. G. Gook, Anal. Chem., 47, 2208 (1975). https://doi.org/10.1021/ac60363a034
  30. S. J. Park and Y. S. Jang, J. Colloid Interface Sci., 263, 170, (2003). https://doi.org/10.1016/S0021-9797(03)00290-X
  31. S. J. Park, J. S. Oh, and D. H. Suh, J. Korean Ind. Eng. Chem., 14, 586 (2003).
  32. S. B. Rho and M. A. Lim, Polymer (Korea), 23, 662 (1999).
  33. S. J. Park, J. S. Oh, and D. H. Suh, Korean J. Chem. Eng. Res., 42, 102 (2004).
  34. D. K. Owens and R. C. Wendt, J. Appl. Polym. Sci., 13, 1741 (1969). https://doi.org/10.1002/app.1969.070130815
  35. D. H. Kaeble, J. Adhes., 2, 66 (1970). https://doi.org/10.1080/0021846708544582
  36. R. E. Haufler, J. Phys. Chem., 94, 8634 (1990). https://doi.org/10.1021/j100387a005
  37. Y. H. Chen, C. Y. Huang, F. D. Lai, M. L. Roan, K. N. Chen, and J. T. Yeh, Thin Solid Films, 517, 4984 (2009). https://doi.org/10.1016/j.tsf.2009.03.137
  38. R. B. Schulz, V. C. Plantz, and D. R. Brush, IEEE Trans. Electromagn. Compat., 30, 362 (1988).
  39. C. Y. Huang and J. F. Pai, Eur. Polym. J., 34, 261 (1998). https://doi.org/10.1016/S0014-3057(96)00248-0
  40. S. S. Tzeng and F. Y. Chang, Mater. Sci. Eng. A : Struct. Mater., 302, 258 (2001). https://doi.org/10.1016/S0921-5093(00)01824-4
  41. C. S Chen, W. R. Chen, S. C. Chen, and R. D. Chien, Int. Commun. Heat. Mass., 35, 744 (2008). https://doi.org/10.1016/j.icheatmasstransfer.2008.02.006
  42. Z. P. Wu, M. M. Li, Y. Y. Hu, Y. S. Li, Z. X. Wang, Y. H. Yin, Y. S. Chen, and X. Zhou, Scripta Mater., 64, 809 (2011). https://doi.org/10.1016/j.scriptamat.2011.01.002
  43. R. B. Schulz, V. C. Plantz, and D. R. Brush, IEEE Trans. on Magn., 30, 362 (1988).
  44. M. H. Al-Saleh, G. A. Gelves, and U. Sundararaj, Comp. Part A : Appl. Sci. Manuf., 42, 92 (2011). https://doi.org/10.1016/j.compositesa.2010.10.003
  45. S. Apollo, J. Phys. D : Appl. Phys., 32, 991 (1999). https://doi.org/10.1088/0022-3727/32/9/308