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COMPUTATION OF TURBULENT NATURAL CONVECTION  

IN A RECTANGULAR CAVITY WITH THE FINITE-VOLUME 

BASED LATTICE BOLTZMANN METHOD

Seok-Ki Choi*1 and Seong-O Kim2

유한체적법을 기초한 레티스 볼쯔만 방법을 사용하여

직사각형 공동에서의 난류 자연대류 해석

최 석 기,*1 김 성 오2

A numerical study of a turbulent natural convection in an enclosure with the lattice Boltzmann method 
(LBM) is presented. The primary emphasis of the present study is placed on investigation of accuracy and 
numerical stability of the LBM for the turbulent natural convection flow. A HYBRID method in which the 
thermal equation is solved by the conventional Reynolds averaged Navier-Stokes equation method while the 
conservation of mass and momentum equations are resolved by the LBM is employed in the present study. 
The elliptic-relaxation model is employed for the turbulence model and the turbulent heat fluxes are treated 
by the algebraic flux model. All the governing equations are discretized on a cell-centered, non-uniform grid 
using the finite-volume method. The convection terms are treated by a second-order central-difference scheme 
with the deferred correction way to ensure accuracy and stability of solutions. The present LBM is applied to 
the prediction of a turbulent natural convection in a rectangular cavity and the computed results are 
compared with the experimental data commonly used for the validation of turbulence models and those by the 
conventional finite-volume method. It is shown that the LBM with the present HYBRID thermal model predicts 
the mean velocity components and turbulent quantities which are as good as those by the conventional 
finite-volume method. It is also found that the accuracy and stability of the solution is significantly affected 
by the treatment of the convection term, especially near the wall. 
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1. INTRODUCTION

Accurate prediction of natural convection flows is very 
important for investigating various engineering applications 
such as cooling of electronic packages, solar collector, 
building ventilation and passive heat removal system of a 

liquid metal nuclear reactor. The Rayleigh number of most 
practical flows for engineering applications is at least 
larger than   and the direct numerical simulation 
or large eddy simulation methods can not applied to these 
practical engineering flows. Most works in the literature 
employ the Reynolds-Averaged Navier-Stokes (RANS) 
equation approach. In the present study we present 
numerical results of turbulent natural convection flow 
computed by the lattice Boltzmann method(LBM) together 
with the RANS equation method.

The LBM has received a great deal of attention during 
last two decades mainly due to its algorithm simplicity.
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The conventional Lagrangian type LBM comprises 
streaming and collision steps and these steps are computed 
algebraically. Thus, the numerical solution of partial 
differential equation is not needed. It is also relatively 
easy to implement the solution procedure in a massively 
parallel computer. Therefore, the LBM can take full 
advantage of parallel computation. In the Eulerian type 
LBM such as the finite-volume or finite-element based 
methods, the linear hyperbolic equations for the particle 
distribution functions are solved. This facilitates the time 
marching solution procedure without inner iteration. Due to 
these advantages many authors employed the LBM for 
numerical solutions of fluid flow and heat transfer 
problems[1]. 

One of the limitations of the conventional LBM has 
been the lack of an accurate and stable thermal model for 
heat transfer problems. There exist four thermal models in 
conjunction with the LBM: the multispeed approach[2], the 
passive scalar approach[3], the double-population 
approach[4] and the HYBRID method. The merits and 
demerits of above four thermal models are explained well 
in Peng et al.[5]. At present the multi-speed approach and 
the passive scalar approach are not used due to the 
numerical instability problems. In the HYBRID method the 
Navier-Stokes equation method is employed only for the 
solution of the energy equation while the conservation of 
mass and momentum is resolved by the LBM. By this 
way the full advantages of the LBM and the 
Navier-Stokes equation method are taken. Only one energy 
equation needs to be solved. Recently Choi and Kim[6] 
compared the relative performance between the 
double-population approach[4] and the HYBRID method 
for the laminar natural convection in a square cavity.  
The computed results showed that the finite-volume based 
HYBRID and double-population LBM are as accurate as 
the Navier-Stokes equation method. The relative 
performance between the HYBRID and double-population 
LBM shows that the HYBRID method shows better 
convergence and stability than the double-population 
method. When the double-population method is used, the 
introduction of additional nine internal energy (or 
temperature) distribution functions in a two-dimensional 
situation (D2Q9) adds to the complexity of the algorithm.  
The HYBRID method is simple to implement and is an 
economic way of implementing the thermal equation with 
the LBM. Following these observations, the HYBRID 
method is used for the numerical solution of turbulent 
natural convection in the present study. 

Computation of turbulent flow is one of the most 

challenging subjects of CFD. Most practical engineering 
problems occur at high Reynolds or Rayleigh number and 
it is still too time consuming to perform a direct 
numerical simulation or a large eddy simulation for such 
flows using the present computers. Thus, introduction of 
RANS (Reynolds-Averaged Navier-Stokes) equation method 
in conjunction with the LBM is needed for numerical 
solution of practical engineering problems and such works 
are reported in the literature, such as the works by 
Teixeira[7] and Choi and Lin[8]. Within the present 
author’s  knowledge only one work by Zheng et al.[9] is 
reported in the literature which computed the turbulent 
natural convection by the RANS equation method with the 
LBM. The authors used the RNG  model with the 
wall function method. In the present study the 
elliptic-relaxation turbulence model by Medic and 
Durbin[10] is used to compute the turbulent natural 
convection in a rectangular cavity. Medic and Durbin[10] 
developed an elliptic-relaxation model in which two more 
partial differential equations than the conventional  
model are solved to determine the velocity scale in the 
expression of turbulence eddy viscosity. Choi et al.[11] 
applied this model to the computation of natural 
convection in a rectangular cavity and showed that this 
model outperforms the conventional  models.

The other difficulty in predicting the turbulent natural 
convection is the treatment of the turbulent heat fluxes.  
If one does not use the differential heat flux model, a 
proper way of treating the turbulent heat fluxes should be 
sought. In the earlier stage of works the present authors 
used a simple gradient diffusion hypothesis (SGDH) in 
treating the turbulent heat fluxes. However, it does not 
work well for the natural convection flows. Ince and 
Launder[12] proposed a generalized gradient diffusion 
hypothesis(GGDH) to overcome this deficiency of the 
SGDH assumption. The GGDH works very well for the 
shear dominant flows, however it produces unstable and 
inaccurate solutions for the strongly stratified natural 
convection flows.  To remedy this deficiency, Kenjeres 
and Hanjalic[13] developed an algebraic flux model 
(AFM). The main difference between the AFM and the 
GGDH is the inclusion of the temperature variance term 
in the algebraic expression of the turbulent heat fluxes.  
This inclusion of temperature variance term stabilizes the 
overall solution process and results in stable and accurate 
solution. However, the AFM requires one more numerical 
solution of a partial differential equation for the 
temperature variance than the GGDH.  

The main objective of the present study is to 
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Fig. 1 A schematic diagram of velocity directions of D2Q9 model

investigate the performance of the HYBRID LBM for 
turbulent natural convection in an enclosure using the 
RANS equation method. A brief introduction is given 
above and the mathematical formulations of the LBM and 
the details of turbulence model will be given in the 
following section. This is followed by the results and 
discussion, and a brief conclusion is drawn.

2. MATHEMATICAL FORMULATION

2.1 GOVERNING EQUATIONS
The discrete Boltzmann equations with 

Bhatnagar-Gross-Krook collision operator can be written as 
follows;




∙∇  


 (1)

for     
where  is the particle distribution function,  is the 
discrete microscopic velocity vector,  is the relaxation 
time and   is the equilibrium distribution function 
obtained by Taylor expansion of the Maxwell-Boltzmann 
distribution function. It is noted that the repeated Greek 
subscript in above equation does not imply summation.  
In the most commonly used D2Q9 lattice, shown in Fig. 
1, the discrete particle velocity vector  is expressed as,
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(2)

The equilibrium distribution function takes the form 


 




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and the weighting factor  is given as follows;  

        

     
(4)

The macroscopic density  and the velocity vector   
are related to the distribution function by

 




  




 (5)

The pressure can be calculated from    with 
the speed of sound     and the kinematic 
viscosity of fluid is   .  The forcing term in Eq.(1) 
is given by He et al.[4] as follows;

    ∙  
 (6)

2.2 BOUNDARY CONDITIONS
The treatment of boundary conditions in the LBM is 

one of the major concerns not fully resolved until now.  
Several different treatments of wall boundary conditions 
are proposed, however, there does not exist a unique 
boundary condition that performs better than the others as 
studied by Latt et al.[14]. The treatment of the boundary 
conditions given in the present study is based on the 
results from numerous numerical experiments. At the wall 
boundary, the macroscopic velocity components are 
imposed and in this case the non-equilibrium bounce-back 
rule proposed by Zou and He[15] is specified, for 
example at the north boundary:

 

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
 (10)

In order to calculate     , we need the values of 
          . In the conventional Lagrangian type 
LBM these values are given during the streaming process. 
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In the present Eulerian finite-volume method these values 
are obtained by a simple linear extrapolation. 

          (11)

where  and  are linear interpolation factors and 
   and   when the numerical grid is 
uniform and the cell-centered scheme is used.

2.3 TURBULENCE MODEL
The turbulence model adopted in the present study is 

the elliptic-relaxation   (N=6) model given in 
Medic and Durbin[10]. In this model the governing 
equations for the turbulent kinetic energy () and its 
dissipation rate () are the same as the standard   
model except the expressions of the turbulent eddy 
viscosity, time scale and model constants. Two additional 
governing equations are solved to determine the velocity 
scale,   .
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where  and  are the rates of turbulent kinetic energy 
production due to shear and gravity respectively and are 
defined as follows.
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In the algebraic flux model by Kenjeres and 
Hanjalic[13], the turbulent heat fluxes are computed 
algebraically by the following equation;
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
 (21)

In the elliptic-relaxation model the turbulent eddy 
viscosity is given in terms of the velocity and time scales;

  

 (22)

and the time and length scales in the above equations are 
given by
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where    with   
 



   and the 

constants in above equations are given as

                   (25)
     




      (26)

               (27)
        

      (28)

One may note that the values of constants,  and 
, differ from those reported in Medic and Durbin [10].  
These constants are optimized through numerical 
experiment so that the model produces the most accurate 
results.

3. RESULTS AND DISCUSSION

As mentioned before, the HYBRID method is employed 
for the thermal model of the LBM in the present study. 
In this approach the mass and momentum conservation are 
resolved by the LBM (Eq.(1)) while the energy 
conservation equation is solved by the RANS equation 
method (Eq.(16)). This HYBRID method is applied to the 
simulation of turbulent natural convection in a rectangular 
cavity. All the governing equations, including the LBM 
equations, are discretized using the finite-volume method. 
The details of discretization of the governing equations for 
the LBM equations and the coupling of the turbulent eddy 
viscosity and the LBM relaxation time( in Eq.(1)) is 
given in Choi and Lin[8]. The convection terms in the    
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Fig. 2 A schematic diagram of 1:5 rectangular cavity

LBM equations are treated by the second-order, 
central-difference scheme with a deferred correction 
method by Khosla and Rubin[16] to ensure the numerical 
stability. 


 

 


  (28)

where the superscript  means the previous time step 
level and the subscript  implies the central-difference 
scheme. 

The test problem considered in the present study is a 
natural convection of air in a rectangular cavity with an 
aspect ratio of 1:5 as shown in Fig. 2. The height of the 
cavity is H=2.5m, the width of the cavity is L=0.5m and 
the temperature difference between the hot and cold walls 
is 45.8°K. The Rayleigh number based on the height of 
the cavity is Ra=4.3×1010 and the Prandtl number is 
Pr=0.71. King[17] has carried out extensive measurements 
for this problem and his experimental data is reported in 
King[17] and Cheesewright et al.[18]. The experimental 
data by King[18] has a problem in that the top wall is 
not fully insulated. This makes the turbulence level near 
the hot wall high and that near the cold wall low, and 
this affects the distribution of the turbulence quantities in 
all the solution domain.    

Fig. 3 shows the comparison of the predicted results 
with the measured data for the vertical velocity component 
at y/H=0.5. As shown in the figures, the agreement       

Fig. 3 Mean vertical velocity profiles at y/H=0.5

Fig. 4 Vertical velocity fluctuation profiles at y/H=0.5

between the measured data and both predictions are fairly 
good and there does not exist a visible difference between 
two predictions by LBM (FVLBM) and Navier-Stokes 
equation method (FVM). The elliptic-relaxation model by 
Medic and Durbin[10] with AFM predicts fairly well the 
mean velocity component and the turbulent quantities 
which will be shown in the subsequent figures. 

Fig. 4 shows the comparison of the predicted vertical 
velocity fluctuation at a mid-height (y/H=0.5) with the 
experimental data. The experimental data shows a nearly 
symmetric profile, however, when one considers the 
insufficient insulation problem at the top wall, the 
measured data near the hot and cold walls are not correct.  
Therefore, the magnitude of the experimental data near the 
hot wall should be greater than that near the cold wall. 
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Fig.5 Reynolds shear stress profiles at y/H=0.5

Fig. 6 Vertical turbulent heat flux profiles at y/H=0.5

The predictions follow the trend of the measured data well 
except for the central region of the cavity where the flow 
is weakly stratified. The two predictions slightly 
under-predict the vertical velocity fluctuation near the wall 
and over-predict it at the central region of the cavity.  
The difference between two predictions is invisible. 

Fig. 5 shows the profiles of the predicted Reynolds 
shear stress   at a mid-plane (y/H=0.5) of the cavity 
together with the measured data.  The measured data 
shows clearly the insufficient insulation problem at the top 
wall. If we consider this problem, the present two 
methods fairly well predict the Reynolds shear stress  . 
The difference between two predictions is also invisible.

Fig. 6 shows the profiles of the predicted vertical 
turbulent heat fluxes,  , at the mid-plane (y/H=0.5) of 

Fig. 7 Wall shear stress profile along the walls

Fig. 8 Local Nusselt number along the walls

the cavity with the measured data. It is noted that the 
vertical turbulent heat flux   plays a very important role 
in the dynamics of the turbulent kinetic energy in the 
buoyant turbulent flows and it directly influences the 
overall prediction of all the quantities. It is noted that the 
AFM contains all the temperature and mean velocity 
gradients together with a correlation between the gravity 
vector and temperature variance, as shown in Eq. (21). 
The elliptic-relaxation model with AFM predicts well the 
vertical turbulent heat flux near the hot wall region and 
this figure shows that the AFM is an accurate and stable 
model in the prediction of turbulent natural convection. 

Fig. 7 and Fig. 8 show the comparisons of the 
predicted results with the measured data for the wall shear 
stress and the local Nusselt number at the hot wall 
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reported in King[17]. The two methods predict the wall 
shear stress at the walls very well and the smooth laminar 
to turbulent transition at the lower portion of the hot wall 
observed in the experimental data is also predicted well. It 
is noted that the measurement of the velocity components 
near the bottom wall is more accurate than that near the 
top wall due to an insufficient insulation at the top wall. 
The present elliptic-relaxation model with AFM predicts 
accurately the local Nusselt number at the hot and cold 
walls, and the transition phenomenon at the lower portion 
of the hot wall is also predicted well. Compared to the 
other variables, the wall shear stress and the local Nusselt 
number are very sensitive due to the very fine grid near 
the walls. In the case of wall shear stress there exist a 
very small difference between two predictions. There is no 
difference between two methods in the prediction of the 
local Nusselt number at the walls. 

4. CONCLUSIONS

The finite-volume based LBM is formulated together 
with the HYBRID thermal model and is applied to the 
prediction of turbulent natural convection in a rectangular 
cavity. The elliptic-relaxation model with the algebraic heat 
flux model is employed for the turbulence model and this 
model predicts accurately the mean and turbulence 
quantities. There exists no visible difference in all the 
predicted results between the LBM and the 
Reynolds-averaged Navier-Stokes equation method except 
for the wall shear stress where a small difference is 
observed. These observations indicate that the LBM with 
the HYBRID thermal model is as accurate as the 
conventional Reynolds-averaged Navier-Stokes equation 
method and can be confidently applied to the predictions 
of various engineering turbulent natural convection 
problems. 
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