DOI QR코드

DOI QR Code

주암호 외남천 유역 하천수의 질소농도와 동위원소비 분석을 이용한 오염원 평가

Estimation of Pollution Sources of Oenam Watershed in Juam Lake using Nitrogen Concentration and Isotope Analysis

  • 최유진 (국립환경과학원 수질총량관리센터) ;
  • 정재운 (국립환경과학원 영산강물환경연구소) ;
  • 최우정 (전남대학교 지역바이오시스템공학과) ;
  • 윤광식 (전남대학교 지역바이오시스템공학과) ;
  • 최동호 (전남대학교 지역바이오시스템공학과) ;
  • 임상선 (전남대학교 지역바이오시스템공학과) ;
  • 정주홍 (전남대학교 지역바이오시스템공학과) ;
  • 임병진 (국립환경과학원 영산강물환경연구소) ;
  • 장남익 (국립환경과학원 기후대기연구부 대기환경연구과)
  • Choi, Yujin (Water Pollution Cap System Division, National Institute of Environment Research) ;
  • Jung, Jaewoon (Yeongsan River Environment Research Laboratory) ;
  • Choi, Woojung (Department of Rural & Bio-systems Engineering, Chonnam National University) ;
  • Yoon, Kwangsik (Department of Rural & Bio-systems Engineering, Chonnam National University) ;
  • Choi, Dongho (Department of Rural & Bio-systems Engineering, Chonnam National University) ;
  • Lim, Sangsun (Department of Rural & Bio-systems Engineering, Chonnam National University) ;
  • Jeong, Juhong (Department of Rural & Bio-systems Engineering, Chonnam National University) ;
  • Lim, Byungjin (Yeongsan River Environment Research Laboratory) ;
  • Chang, Namik (Air Quality Research Division, National Institute of Environment Research)
  • 투고 : 2011.03.30
  • 심사 : 2011.06.11
  • 발행 : 2011.07.30

초록

In an effort to investigate water pollution characteristics of Juam lake, water samples were collected from three sites (Sites A, B, and C) of Oenam stream which is a typical tributary of rural watershed in the lake and analyzed for N concentration and the corresponding isotope ratio (${\delta}^{15}N$) of ${NO_3}^-$. Concentrations of ${NO_3}^-$ were not dramatically different among the sites; $0.8{\pm}0.2mgNL^{-1}$ (range: $0.0{\sim}4.3mgNL^{-1}$) for Site A, $1.1{\pm}0.2mgNL^{-1}$ ($0.0{\sim}4.3mgNL^{-1}$) for Site B, and $1.1{\pm}0.1mgNL^{-1}$ ($0.1{\sim}2.6mgNL^{-1}$) for Site C. Meanwhile, ${\delta}^{15}N$ tended to decrease with river flow; it was highest for Site A ($45.5{\pm}5.3$‰) followed by Site B ($19.7{\pm}2.0$‰) and Site C ($8.7{\pm}1.5$‰). Such high ${\delta}^{15}N$ values of ${NO_3}^-$ in Site A suggested that ${NO_3}^-$ derived from livestock feedlot (specifically livestock excrete of which ${\delta}^{15}N$ is higher than 10‰) is the predominant pollution sources despite mountainous area occupied the most of land-use in the watershed. Using the two-sources isotope mixing model, it was estimated that the contribution of cropping activities (i.e. fertilization) became greater in down-stream area (Sites B and C) due to the higher agricultural land-use than the up-stream area (Site A). Particularly, during the active cropping season, the low contribution of organic pollution sources indicated that domestic sewage was not the predominant pollution source. Therefore, it was suggested that agricultural sources such as livestock farming and cropping rather than mountainous and residential are the dominant sources of water pollution in the study area. These results could be effectively utilized in elucidating water pollution sources in rural areas and selecting water management practices.

키워드

과제정보

연구 과제 주관 기관 : 영산강물환경연구소

참고문헌

  1. 고한종, 최홍림, 김기연(2005). 질소 동위원소비를 이용한 관행농업과 유기농업에서의 질산태 질소 오염원 구명. 동물자원지, 47(3), pp. 481-490.
  2. 손충현(2004). 농촌유역에서의 비점오염원 유출특성에 관한 연구. 공학석사학위논문, 충주대학교.
  3. 이소영(2001). 농촌계 비점오염원에서의 질소와 인의 유출입과 유역의 수질변화. 공학석사학위논문, 전남대학교.
  4. 이용두, 현승구, 송희경(2003). 질소동위원소를 이용한 제주도 옹포천 유역의 질산성질소 오염원 조사 연구. 수질보전 한국물환경학회지, 19(4), pp. 455-461.
  5. 최우정(2005). 질소$({\delta}^{15}N)$ 및 산소동위원소비$({\delta}^{18}O)$를 이용한 지하수 중 $NO_3$-의 오염원 구명. KCID Journal, 12, pp. 84-90.
  6. 홍영진(2001). 안정 동위원소비를 이용한 농촌하천유역 질산성질소의 오염원 추정. 공학석사학위논문, 서울대학교.
  7. 환경부.국립환경과학원(2007). 전국오염원조사자료, 수질총량관리센터.
  8. Aravena, R. and Robertson, W. D. (1998). Use of multiple isotope tracers to evaluate denitrification in ground water; Study of nitrate from a large-flux septic system plume. Ground Water, 36, pp. 975-982. https://doi.org/10.1111/j.1745-6584.1998.tb02104.x
  9. Choi, W. J. and Ro, H. M. (2003). Differences in isotopic fractionation of nitrogen in water-saturated and unsaturated soils. Soil Biology & Biochemistry, 35, pp. 483-486. https://doi.org/10.1016/S0038-0717(02)00299-7
  10. Choi, W. J., Han, G. H., Lee, S. M., Lee, G. T., Yoon, K. S., Choi, S. M., and Ro, H. M. (2007). Impact of land-use types on nitrate concentration and ${\delta}^{15}N$ in unconfined groundwater in rural areas of Korea. Agriculture, Ecosystems and Envirionment, 120, pp. 259-268. https://doi.org/10.1016/j.agee.2006.10.002
  11. Choi, W. J., Han, G. H., Ro, H. M., Yoo, S. H., and Lee, S. M. (2002). Evaluation of nitrate contamination sources of unconfined groundwater in the North Han River basin of Korea using nitrogen isotope ratios. Geosciences Journal, 6, pp. 47-55. https://doi.org/10.1007/BF02911335
  12. Choi, W. J., Lee, S. M., and Ro, H. M. (2003). Evaluation of contamination sources of groundwater $NO_3$ using nitrogen isotope data; A review. Geosciences Journal, 7, pp. 81-87. https://doi.org/10.1007/BF02910268
  13. Curt, M. D., Aguado, P., Sánchez, G., Bigeriego, M., and Fernández, J. (2004). Nitrogen isotope ratios of synthetic and organic sources of nitratewater contamination in spain. Water, Air, and Soil Pollution, 151, pp. 135-142.
  14. Feast, N. A., Hiscock, K. M., Dennis, P. F., and Andrews, J. N. (1998). Nitrogen isotope hydrochemistry and denitrification within the Chalk aquifer system of north Norfolk, UK. J. Hytrol, 211, pp. 233-252.
  15. Flipse, Jr. W. J. and Bonner, F. T. (1985). Nitrogen-isotope ratios of nitrate in ground water under fertilized fields, Long Island, New York. Ground Water, 23, pp. 59-67. https://doi.org/10.1111/j.1745-6584.1985.tb02780.x
  16. Heaton, T. H. E. (1986). Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review. Chem. Geol., 59, pp. 87-102. https://doi.org/10.1016/0168-9622(86)90059-X
  17. Hale, J. A. and Duffey, R. M. (2009). Using stable nitrogen isotopes to quantify the influence of potential nutrient sources in the peace river watershed. FINAL REPORT, Charlotte Harbor National Estuary Program pp. 27.
  18. Kellman, L. M. and Hillaire-Marcel, C. (2003). Evaluation of nitrogen isotopes as indicators of nitrate contamination sources in an agricultural watershed. Agr. Ecosyst. Environ., 95, pp. 87-102. https://doi.org/10.1016/S0167-8809(02)00168-8
  19. Kohl, D. H., Shearer, G. B., and Commoner, B. (1971). Fertilizer nitrogen: Contribution to nitrate in surface water in a corn belt watershed. Science, 174, pp. 1331-1334. https://doi.org/10.1126/science.174.4016.1331
  20. Komor, S. C. and Anderson, Jr. (1993). Nitrogen isotope as indicator of nitrate sources in Minnesota sand-plain aquifers. Ground Water, 31, pp. 260-270. https://doi.org/10.1111/j.1745-6584.1993.tb01818.x
  21. Kreitler, C. W. (1979). Nitrogen-isotope ratio studies of soils and ground-water nitrate from alluvial fan aquifers in Texas. J. Hydrol., 42, pp. 147-170. https://doi.org/10.1016/0022-1694(79)90011-8
  22. Kwak, J. H., Choi, W. J., Lim, S. S., and Arshad, M. A. (2009). ${\delta}^{13}N$, ${\delta}^{15}N$, N concentration, and Ca-to-Al ratios of froest samples from Pinus densiflora stands in rural and industrial areas. Chemical Geology, 264, pp. 385-393. https://doi.org/10.1016/j.chemgeo.2009.04.002
  23. Lim, S. S., Lee, S. M., Lee, S. H., and Choi, W. J. (2010). Nitrogen isotope compositions of synthetic fertilizer, raw livestock manure slurry, and composted livestock manure. Korean J. Soil Sci., 43(4), pp. 453-457.
  24. Mayer, B., Boyer, E. W., Goodale, C., Jaworski, N. A., Breemen, N. V., Howarth, R. W.,Seitzinger, S., Billen, G., Lajtha, K., Nadelhoffer, K., Dam, D. V., Hetling, L. J., Nosal, M., and Paustian, K. (2002). Sources of nitrate in rivers draining sixteen watersheds in the northeastern U.S.: Isotopic constraints. Biogeochemistry, 57/58, pp. 171-197.
  25. Oh, Y. K. and Hyun, L. H. (1997). Estimation of nitratenitrogen contamination sources in Cheju island groundwater using ${\delta}^{15}N$ values. Journal of the Korean Society of Groundwater Environment, 4, pp. 1-4.
  26. Oren, O., Yechieli, Y., BOhlke, J. K., and Dody, A. (2004). Contamination of groundwater under cultivated fields in an arid environment, central Arava Valley, Israel. J. Hydrol., 290, pp. 312-328. https://doi.org/10.1016/j.jhydrol.2003.12.016
  27. Voss, M., Deutsch, B., Elmgren, R., Humborg, C., Kuuppo, P., Pastuszak, M., Rolff, C., and Schulte, U. (2006). River biogeochemistry and source identification of nitrate by means of isotopic tracers in the Baltic Sea catchments. Biogeosciences Discuss., 3, pp. 475-511. https://doi.org/10.5194/bgd-3-475-2006
  28. Wells, E. R. and Krothe, N. C. (1989). Seasonal fluctuation in ${\delta}^{15}N$ of gound-water nitrate in a mantled karst aquifer due to macropore transport of fertilizer-derived nitrate. J. Hydrol., 112, pp. 191-201. https://doi.org/10.1016/0022-1694(89)90188-1
  29. Yoo, S. H., Choi, W. J., and Han, G. W. (1999a). An investigation of the sources of nitrate contamination in the Kyonggi province groundwater by isotope ratios analysis of nitrogen. Korea Journal of Soil Science & Fertilizer, 32, pp. 47-56.
  30. Yoo, S. H., Choi, W. J., Han, G. H., Park, J. G., Lee, S. M., and Jin, S. A. (1999b). Temporal variations in isotope ratios and concentrations of nitrate-nitrogen in groundwater as affected by chemical fertilizer and livestock manure. Agricultural Chemistry and Biotechnology, 42, pp. 186-190.