DOI QR코드

DOI QR Code

Photocatalysis and Adsorption of Reactive Black 5(RB5) by HAP/TiO2 Media

HAP/TiO2 여재를 이용한 Reactive Black 5(RB5)의 광촉매 반응과 흡착

  • 천석영 (경기대학교 환경에너지시스템공학과) ;
  • 장순웅 (경기대학교 환경에너지시스템공학과)
  • Received : 2011.06.30
  • Accepted : 2011.09.26
  • Published : 2011.11.01

Abstract

This study investigated on the adsorption and photocatalysis of Reactive Black 5(RB5) by the hydroxyapatite(HAP)/Titanium dioxide($TiO_{2}$) media. The adsorption of RB5 on $TiO_{2}$, HAP and $TiO_{2}$/HAP was investigated during a series of batch adsorption experiments. The amounts adsorbed at equilibrium were measured. Langmuir and Freundlich isotherm models were tested for their applicability. The result of equilibrium studies of $TiO_{2}$, HAP and $TiO_{2}$/HAP adsorbent were found to follow Langmuir isotherm model. The adsorbed amounts(Qmax) were found to be 5.28mg/g on single $TiO_{2}$, 12.45mg/g on single HAP and 9.03mg/g on $TiO_{2}$/HAP, respectively. The experimental data were analysed using the pseudo-first-order adsorption and photocatalysis kinetic models. According to these models, RB5 degradation by $TiO_{2}$/HAP was affected by interaction effect of photocatalysis and adsorption.

본 연구는 Hydroxyapatite(HAP)/$TiO_{2}$ 여재에 의한 Reactive Black 5(RB5)의 흡착과 광촉매 반응을 조사하였다. RB5에 대한 $TiO_{2}$, HAP와 $TiO_{2}$/HAP의 흡착은 연속적인 회분식 실험을 통해 조사하였다. 흡착평형에 따른 결과를 나타내었으며 Langmuir와 Freundlich isotherm model을 사용하여 적용성을 조사하였다. $TiO_{2}$, HAP와 $TiO_{2}$/HAP 흡착제별 흡착평형 결과는 Langmuir isotherm model에 적합하였으며 최대흡착량(Qmax)의 값은 각각 단일 $TiO_{2}$는 5.28mg/g, 단일 HAP는 12.45mg/g, $TiO_{2}$/HAP는 9.03mg/g으로 나타났다. 흡착과 광촉매 반응에 대한 kinetic model들은 유사 1차 반응을 통해 분석하였으며, 이들 model에 따르면 $TiO_{2}$/HAP에 의한 RB5 제거는 광촉매 반응과 흡착반응의 상호작용의 영향을 받는 것으로 나타났다.

Keywords

Acknowledgement

Supported by : 환경부

References

  1. 강한, 박성민, 장윤득, 김정진(2008), 제올라이트와 벤토나이트를 이용한 중금속 흡착특성, 한국광물학회지, Vol. 21, No. 1, pp. 45-56.
  2. 구정은, 나동훈, 이승환(2009), 낙동강수계에서 섬유염색 및 가공 업체에 대한 공정별 원단위산정 및 분석, 대한환경공학회지, Vol. 31, No. 9, pp. 765-774.
  3. 권보연, 최명찬, 임정현, 장민, 신연식, 김지형(2008), 탄광배수 슬러지를 이용한 산성광산배수 중의 Cu(II)흡착: 흡착평형 및 흡착속도 모델링, 한국폐기물학회지, Vol. 25, No. 8, pp. 709-715.
  4. 박성준, Rittmann, B. E., 배우근(2009), 나노-$TiO_{2}$ 입자로 코팅된 다공성 담체의 광촉매 반응에 관한 동력학, 대한환경공학회지, Vol. 31, No. 10, pp. 927-932.
  5. 박재홍, 장순웅, 조일형(2004), 광촉매와 다양한 광원을 이용한 Acid Orange II의 색도 제거에 관한 연구, 한국폐기물학회지, Vol. 21, No. 8, pp. 843-850.
  6. 백미화, 전혜인, 이지애, 김동수(2009), 활성탄과 유리섬유를 흡착제로 이용한 아조염료 함유 페수의 처리, 한국물환경학회지, Vol. 25, No. 3, pp. 370-374.
  7. 안상우, 박재홍, 조일형, 장순웅(2006), 광촉매공정과 초음파를 접목시킨 광촉매공정에 의한 Benomyl의 분해 비교, 한국물환경학회지, Vol. 22, No. 4, pp. 585-589.
  8. 안상우, 최재영, 박재우(2010), Hydroxyapatite 첨가 활성탄을 이용한 Cd의 동역학적 흡착과 흡착평형에 관한 연구, 한국지반환경공학회, Vol. 11, No. 1, pp. 45-51.
  9. 조일형, 이내현, 장순웅, 안상우, 윤영한, 조경덕(2006), 실험계획법 중 Box-Behnken법을 이용한 반응성 염료의 광촉매 산화조건 특성 해석 및 최적화, 대한환경공학회지, Vol. 28, No. 9, pp. 917-925.
  10. 하동윤, 조순행(2003), UV/$H_{2}O_{2}$$TiO_{2}$ 광촉매 산화에 의한 염색폐수의 처리효율 비교, 대한환경공학회지, Vol. 25, No. 9, pp. 1123-1131.
  11. 한국염색기술연구소(1998), '98 염색가공기술 세미나 자료집'.
  12. Aguedach, A., Brosillon, S., Morvan, J., and Lhadk, E. K. (2008), Influence of Ionic Strength in the Adsorption and during Photocatalysis of Reactive Black 5 Azo Dye on $TiO_{2}$ Coated on Non Woven Paper with $SiO_{2}$ as Binder, Journal of Hazardous Materials, Vol. 150, No. 2, pp. 250-256. https://doi.org/10.1016/j.jhazmat.2007.04.086
  13. Ahn, D. H., Chang, W. S, and Yoon, T. I.(1999), Dyestuff Wastewater Treatment Using Chemical Oxidation, Physical Adsorption and Fixed Bed Biofilm Process, Process Biochemistry, Vol. 34, No. 5, pp. 429-439. https://doi.org/10.1016/S0032-9592(98)00111-3
  14. Alvin W. M. Ip, John P. Barford, Gordon McKay(2010), A Comparative Study on the Kinetics and Mechanisms of Removal of Reactive Black 5 by Adsorption onto Activated Carbons and Bone Char, Chemical Engineering Journal, Vol. 157, Issues 2-3, pp. 434-442. https://doi.org/10.1016/j.cej.2009.12.003
  15. Bahdod, A., El Asri, S., Saoiabi, A., Coradin, T., Laghzizil, A.(2009), Adsorption of Phenol from An Aqueous Solution by Selected Apatite Adsorbents: Kinetic Process and Impact of the Surface Properties, Water research, Vol. 43, No. 2, pp. 313-318. https://doi.org/10.1016/j.watres.2008.10.023
  16. Belessi, V., Romanos, G., Boukos, N., Lambropoulou, D., and Trapalis, C.(2009), Removal of Reactive Red 195 from Aqueous Solutions by Adsorption on the Surface of $TiO_{2}$ Nanoparticles, Journal of Hazardous Materials, Vol. 170, No. 2-3, pp. 836-844. https://doi.org/10.1016/j.jhazmat.2009.05.045
  17. Cho, M., Chung, H., Choi, W., and Yoon, J.(2004), Linear Correlation Between Inactivation of E-coli and OH Radical Concentration in $TiO_{2}$ Photocatalytic Disinfection, Water Research, Vol. 38, No. 4, pp. 1069-1077. https://doi.org/10.1016/j.watres.2003.10.029
  18. Corami, A., Mignardi, S., Ferrini, V.(2007), Copper and Zinc Decontamination from Single- and Binary-Metal Solutions Using Hydroxyapatite, Journal of Hazardous Materials, Vol. 146, No. 1-2, pp. 164-170. https://doi.org/10.1016/j.jhazmat.2006.12.003
  19. Couto, S. R., Dominguze, A., and Sanroman A.(2001), Photocatalytic Degradation of Dyes in Aqueous Solution Operating in a Fluidized Bed Reactor, Chemoshere, Vol. 46, No. 1, pp. 83-86.
  20. Elouear, Z., Bouzid, J., Boujelben, N., Feki, M., Jamoussi, F., Montiel, A.(2008), Heavy Metal Removal from Aqueous Solutions by Activated Phosphate Rock, Journal of Hazardous Materials, Vol. 156, No. 1-3, pp. 412-420. https://doi.org/10.1016/j.jhazmat.2007.12.036
  21. Lin, S.H., Lo, C.C.(1997), Fenton Process for Treatment of Desizing Wastewater. Water Research. Vol. 31, No. 8, pp. 2050-2056. https://doi.org/10.1016/S0043-1354(97)00024-9
  22. Irmak S., Kusvuran E., Erbatur O.(2004), Degradation of 4- Chloro-2-Methylphenol in Squeous Solution by UV Irradiation in the Presence of Titanium Dioxide, Applied Catalysis B: Environmental, Vol. 54, No. 2, pp. 85-91. https://doi.org/10.1016/j.apcatb.2004.06.003
  23. Schuchmann Heinz-Peter, David J. Deeble, Gottfried Olbrich and Clemens Von Sonntag(1987), The $SO_{4}^{-}$.-induced Chain Reaction of 1, 3-Dimethyluracil with Peroxodisulphate, International Journal of Radiation Biology, Vol. 51, No. 3, pp. 441-453. https://doi.org/10.1080/09553008714550931
  24. Sulak, M. T., Demirbas, E., and Kobya, M.(2007), Removal of Astrazon Yellow 7GL from Aqueous Solutions by Adsorption onto Wheat Bran, Bioresource Technology, Vol. 98, No. 13, pp. 2590-2598. https://doi.org/10.1016/j.biortech.2006.09.010
  25. Wanpeng, Z., Zhihua, Y., Li, W.(1996), Application of Ferroushydrogen Peroxide for the Treatment of H-Acid Manufacturing Process Wastewater. Water Research. Vol. 30, No. 12, pp. 2949-2954. https://doi.org/10.1016/S0043-1354(96)00197-2
  26. Xue, G., Liu, H., Chen, Q., Hills, C., Tyrer, M., and Innocent F.(2011), Synergy between Surface Adsorption and Photocatalysis During Degradation of Humic acid on $TiO_{2}$/Activated Carbon Composites, Journal of Hazardous Materials, Vol. 186, No. 1, pp. 765-772. https://doi.org/10.1016/j.jhazmat.2010.11.063