DOI QR코드

DOI QR Code

Combustion-Retardation Properties of Low Density Polyethylene and Ethylene Vinyl Acetate Mixtures with Magnesium Hydroxide

수산화마그네슘이 첨가된 저밀도 폴리에틸렌과 에틸렌 비닐 아세테이트 혼합물의 난연성

  • Chung, Yeong-Jin (Department of Fire Protection Engineering, Kangwon National University) ;
  • Lim, Hyung Mi (Eco-composite Materials Center, Green Ceramics Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Jin, Eui (Fire & Disaster Prevention Research Center, Kangwon National University) ;
  • Oh, JungKyoo (Fire & Disaster Prevention Research Center, Kangwon National University)
  • 정영진 (강원대학교 소방방재공학과) ;
  • 임형미 (한국세라믹기술원) ;
  • 진의 (강원대학교 소방방재연구센터) ;
  • 오정규 (강원대학교 소방방재연구센터)
  • Received : 2011.07.12
  • Accepted : 2011.07.26
  • Published : 2011.08.10

Abstract

It was performed to test the combustive properties of low density polyethylene and ethylene vinyl acetate (LDPE-EVA) mixture by the addition of magnesium hydroxide. Flame retardant of natural magnesium hydroxide was added to the mixture of LDPE-EVA in 40 to 80 wt% concentration. The composite was compounded to prepare specimen for combustive analysis by cone calorimeter (ISO 5660-1). Comparing with virgin LDPE-EVA, the specimens including the magnesium hydroxide had lower combustive properties. It is supposed that the combustion-retardation properties in the composites improved due to the endothermic decomposition of magnesium hydroxide. The specimens with magnesium hydroxide showed both the lower peak heat release rate (PHRR) and lower effective heat of combustion (EHC) than those of virgin polymer. As the magnesium hydroxide content increases, time to ignition increased and the peak heat release rate decreased.

수산화마그네슘이 첨가된 저밀도 폴리에틸렌-에틸렌 비닐 아세테이트 혼합물의 연소성을 시험하였다. 저밀도 폴리에틸렌-에틸렌 비닐 아세테이트에 수산화마그네슘을 40~80 wt% 첨가하여 용융 혼합하고 성형 후 콘칼로리미터(ISO 5660-1)를 이용하여 그의 연소성을 시험하였다. 수산화마그네슘을 첨가한 시험편은 첨가하지 않은 시험편에 비하여 그의 연소성이 감소하였다. 이것은 순수한 저밀도 폴리에틸렌-에틸렌 비닐 아세테이트에 첨가한 수산화마그네슘의 흡열 분해 때문에 연소 억제성이 향상된 것으로 생각된다. 수산화마그네슘을 첨가한 시험편은 첨가하지 않은 시험편에 비해 낮은 최대열방출률과 낮은 유효연소열을 나타내었고, 수산화마그네슘 함량이 증가할수록 착화시간은 길어지고, 최대열방출률은 감소하였다.

Keywords

References

  1. G. L. Nelson, Fire and Polymers, American Chemical Society, Washington D.C. (1990).
  2. M. Lewis, S. M. Altas, and E. M. Pearce, Flame-Retard ant Polymer Materials, Plenum Press, New York (1975).
  3. S. J. Park, S. W. Song, J. R. Lee, B. G. Min, and J. S. Shin, J. Korean, Ind. Eng. Chem., 15, 41 (2004).
  4. J. Y. Shieh and C. S. Wang, Polymer, 42, 7617 (2001). https://doi.org/10.1016/S0032-3861(01)00257-9
  5. C. S. Wang and J. Y. Shieh, J. Appl. Polym. Sci., 73, 353 (1999). https://doi.org/10.1002/(SICI)1097-4628(19990718)73:3<353::AID-APP6>3.0.CO;2-V
  6. Y. Tanaka, Epoxy Resin Chemistry and Technology, Marcel Dekker, New York (1988).
  7. J.-P. Hsu and A. Nacu, Colloids Surf. A : physicochem. Eng. Aspects, 262, 220 (2005). https://doi.org/10.1016/j.colsurfa.2005.04.038
  8. W. E. Horn, Inorganic Hydroxides and Hydroxycarbonates: Their Function and Uses as Flame-Retardant Additives, adds. A. F. Grand AF, C. A. Wilkie, Fire Retardancy of Polymeric Materials. 285, Marcel Dekker, New York (2000).
  9. R. N. Rothon, Effects of Particulate Fillers on Flame Retardant Properties of Composities, edd. Rothon RN, Particulate Filled polymer Composites, 263, Rapra Technology Ltd., Shrewsbury (2003).
  10. M. Lewin and E. D. Weil, Mechanisms and modes of action in flame retardancy of polymer, adds. A. R Horrocks and D. Price, Fire retardant Materials, 31, Woodhead Publishing, Cambrige, UK. (2001).
  11. R. N. Rothon and P. R. Hornsby, Polym. Degrad. Stab., 54, 383 (1996). https://doi.org/10.1016/S0141-3910(96)00067-5
  12. H. M. Lim, J. Yun, M. Hyun, Y. Yoon, D. J. Lee, C. M. Whang, S. O. Jeong, and S. H. Lee, J. of Ceramic Processing Research, 10, 571 (2009).
  13. H. M. Lim, J. Yoon, S. O. Jeong, D. J. Lee, and S.-H. Lee, Kor. J. Mater. Res., 20, 691 (2010). https://doi.org/10.3740/MRSK.2010.20.12.691
  14. V. Babrauskas, New Technology to reduce Fire Losses and Costs, eds. S. J. Grayson and D. A. Smith, Elsevier Appied Science Publisher, London, UK. (1986).
  15. M. M. Hirschler, Thermal decomposition and chemical composition, 239, American Chemical Society Symposium Series 797 (2001).
  16. M. M. Hirschler, Advances in Combustion Toxicology, 2, 229 (1990).
  17. ISO 5660-1, Reaction-to-Fire Tests-Heat Release, Smoke Production and Mass Loss Rate - Part 1 : Heat Release Rate (Cone Calorimeter Method), Genever (2002).
  18. Y. J. Chung, J. Ind. Eng. Chem. 16, 15 (2010). https://doi.org/10.1016/j.jiec.2010.01.031
  19. F. M. Pearce, Y. P. Khanna, and D. Raucher, Thermal analysis in polymer flammability, Chap. 8, Thermal Characterization of Polymeric Materials, Academic Press, New York, U.S.A. (1981).
  20. J. D. DeHaan, Kirks's fire investigation, fifth edition, 84, Prentice Hall. (2002).
  21. V. Babrauskas, Fire and Materials, 8, 81 (1984). doi: 1002/fam. 810080206. https://doi.org/10.1002/fam.810080206
  22. V. Babrauskas and S. J. Grayson, Heat release in Fires, 644, E & FN Spon (Chapman and Hall), London, UK. (1992).
  23. V. Babrauskas, Heat Release Rate, Section 3, The SFPE Handbook of Fire Protection Engineering, Fourth ed., National Fire Protection Association, Massatusetts, U.S.A. (2008).
  24. M. J. Spearpoint and G. J. Quintiere, Combustion and Flame, 123, 308 (2000). https://doi.org/10.1016/S0010-2180(00)00162-0
  25. J. G. Quintire, Principles of Fire Behavior, Chap. 5, Cengage Learning, Delmar, U.S.A. (1998).