DOI QR코드

DOI QR Code

Early Successional Change of Vegetation Composition After Clear Cutting in Pinus densiflora Stands in Southern Gangwon Province

강원도 남부지역에서 소나무림 벌채 후 초기 종조성 변화

  • Cho, Yong Chan (Department of Forest Resource Conservation, Korea National Arboretum) ;
  • Kim, Jun Soo (Department of Forestry, Graduate School, Kyungpook National University) ;
  • Lee, Chang Seok (School of Environment & Life Scinence, Seoul Women's University) ;
  • Cho, Hyun Je (Korea Green Promotion Agency) ;
  • Lee, Ho Yeong (Eastern regional forest service) ;
  • Bae, Kwan Ho (School of Ecology & Environmental System, Kyungpook National University)
  • 조용찬 (국립수목원 산림자원보존과) ;
  • 김준수 (경북대학교 대학원 임학과) ;
  • 이창석 (국립생태원건립추진단) ;
  • 조현제 (산림청 녹색사업단) ;
  • 이호영 (동부지방산림청) ;
  • 배관호 (경북대학교 생태환경시스템학부)
  • Received : 2011.02.23
  • Accepted : 2011.04.21
  • Published : 2011.06.30

Abstract

Vegetation changes were studied for 16 yr in clearcut logged Pinus densiflora forests in the southern Gangwon-do province in Korea by applying chronosequence approach. Ambient temperature and relative humidity, Detrended Correspondence Analysis (DCA), Multiple Responses Permutation Procedure (MRPP), Indicator Species Analysis (ISPAN) were used to examine successional trajectory and compositional changes. After clearcutting, canopy openness was increased abruptly at three folds (1yr 68.3% and R1 23.0%) and then decreased, but relative moisture was slightly decreased (6%) compare to control site. In the result of DCA, right after clear cutting, vegetation composition was developed heterogeneously compared to control sites, and then approached to control sites within 16 years. Based on MRPP, species composition of each developmental stages (1yr, 3yr, 10yr and 16yr) revealed signigicant differences to that of control vegetation (R1, R3, R10 and R16). Indicator species in 1yr and 3yr samples included various woody species rather than herbaceous species, but in 10yr and 16yr, herbaceous were more abundant. Earlier succession of pine forests likely can explain to Initial Floristic Composition (IFC) Model.

강원도 남부 지역의 발달단계가 다른 소나무림 벌채지에서 16년 동안의 식생 변화를 연구하였다. 교란 후, 천이 궤적 및 환경 변화를 온도, 상대습도, 서열분석(Detrended Correspondence Analysis, DCA), Multiple Responses Permutation Procedure(MRPP) 및 지표종 분석(Indicator Species Analysis, ISPAN) 등을 통하여 분석하였다. 벌채 직후, 수관열림도는 대조구와 비교하여 세 배(1yr 68.3% 및 R1 23.0%)로 급격히 증가한 후 감소하였으나, 상대습도는 비교적 작은 변화(약 6% 감소)를 나타내었다. DCA 결과, 벌채 후 초기에는 종조성이 이질적으로 변화하였으나, 점차 벌채 이전(대조구)의 것과 유사하게 발달하였다. MRPP 결과, 각 발달 단계(1yr, 3yr, 10yr 및 16yr)의 종 조성은 대조구(R1, R3, R10 및 R16)의 것과 유의한 차이를 보였다. 1yr 및 3yr에서는 목본성 종이, 10yr 및 16yr에서는 초본 종들이 주요 종으로 분석되어, 교란 직후에는 목본성 종들이 활발한 재생을 나타내며, 이후 초본 식생이 발달하는 것을 보였다. 연구 대상지역의 천이는 초기 식물상 조성 모델로 설명할 수 있을 것으로 판단된다.

Keywords

References

  1. 국립수목원, 한국식물분류학회. 2007. 국가표준식물목록. 국립수목원. pp. 534.
  2. 동북아산림포럼. 2000. 한국의 산림과 임업. 동북아산림 포럼, 서울.
  3. 이창복. 1993. 대한식물도감. 향문사. pp. 990.
  4. 이창석, 김홍은. 1989. 소나무림의 천연하종갱신을 위한 생태학적 연구. 충북대학교 농업과학연구 7: 100-109.
  5. Cho, Y.C., Pee, J.H., Kim, K.S., Koo, B.Y., Cho, H.J. and Lee, C.S. 심사중. Vegetation responses to forest thinning in natural and planted broadleaved forests in southeast Korea: a chronosequence study.
  6. Frazer, G.W., Canham, C.D. and Lertzman, K.P. 1999. Gap light analyzer (GLA), version 2.0: imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation. Simon Frazer University, Burnaby, BC, and the Institute of Ecosystem Studies, Millbrook, NY.
  7. Halpern, C.B. 1989. Early successional patterns of forest species: interactions of life history traits and disturbance. Ecology 70: 704-720. https://doi.org/10.2307/1940221
  8. Haugo, R.D. and Halpern, C.B. 2007. Vegetation responses to conifer encroachment in a dry, montane meadow: a chronosequence approach. Canadian Journal of Botany 85: 285-298. https://doi.org/10.1139/B07-024
  9. Hill, M.O. and Gauch, Jr H.G. 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42: 47-58. https://doi.org/10.1007/BF00048870
  10. Inouye, R.S., Huntly, J.N., Tilman, D., Tester, J.R., Stillwell, M. and Zinnel, K.C. 1987. Old-field succession on a Minnesota sand plain. Ecology 68: 12-26. https://doi.org/10.2307/1938801
  11. Kimmin, J.P. 2003. Forest ecology: a foundation for sustainable forest management and environmental ethics in forestry, 3rd edn. Prentice Hall, Upper Saddle River, NJ.
  12. Lee, C.S., Kim, J.H., Yi, H. and You, Y.H. 2004. Seedling establishment and regeneration of Korean red pine (Pinus densiflora S. et Z.) forests in Korea in relation to soil moisture. Forest Ecology and Management 199: 423-432. https://doi.org/10.1016/j.foreco.2004.05.053
  13. Lutz, J.A. and Halpern, C.B. 2006. Tree mortality during early forest: A long-term study of rates, causes, and consequences. Ecological Monographs 76: 257-275. https://doi.org/10.1890/0012-9615(2006)076[0257:TMDEFD]2.0.CO;2
  14. McCune, B. and Mefford, M.J. 1999. PC-Ord. Multivariate analysis of ecological data. Version 4. MjM Software Design, Gleneden Beach, Oregon, USA.
  15. Pickett, S.T.A. 1989. Space for time substitution as an alternative to long-term studies. In: Likens GE (ed), Longterm studies in ecology. Wiley, Chichester, pp 71-88.
  16. Walker, L.R. and del Moral, R. 2003. Primary Succession and Ecosystem Rehabilitation. Cambridge University Press, Cambridge, UK.