DOI QR코드

DOI QR Code

Understanding of Polymer Electrolyte Membrane for a Unitized Regenerative Fuel Cell (URFC)

일체형 재생 연료전지(URFC)용 고분자 전해질 막의 이해

  • Jung, Ho-Young (Department of Chemical Engineering, Kangwon National University)
  • 정호영 (강원대학교 삼척캠퍼스 화학공학과)
  • Received : 2011.01.18
  • Accepted : 2011.03.08
  • Published : 2011.04.10

Abstract

A unitized regenerative fuel cell (URFC) as a next-generation fuel cell technology was considered in the study. URFC is a mandatory technology for the completion of the hybrid system with the fuel cell and the renewable energy sources, and it can be expected as a new technology for the realization of hydrogen economy society in the $21^{st}$ century. Specifically, the recent research data and results concerning the polymer electrolyte membrane for the URFC technology were summarized in the study. The prime requirements of polymer electrolyte membrane for the URFC applications are high proton conductivity, dimensional stability, mechanical strength, and interfacial stability with the electrode binder. Based on the performance of the polymer electrolyte membrane, the URFC technology combining the systems for the production, storage, utilization of hydrogen can be a new research area in the development of an advanced technology concerning with renewable energy such as fuel cell, solar cell, and wind power.

본 연구에서는 차세대 연료전지 기술로서 일체형 재생 연료전지(Unitized Regenerative Fuel Cell, URFC)에 대하여 검토하였다. URFC는 신재생 에너지원과 연료전지의 하이브리드 시스템 구현을 목적으로 하는 필수 기술이며 21세기 수소경제 사회 완성을 위한 신기술로 평가된다. 특히 본 연구에서는 URFC 요소 기술로서 고분자 전해질 막에 대한 연구 결과를 정리하여 URFC 기술의 이해를 돕고자 하는 것이 목적이다. URFC용 고분자 전해질 막은 기능적 특성상 높은 수소이온 전도도, 치수안정성, 기계적 물성 및 계면 안정성이 요구된다. 이를 바탕으로 미래 에너지원인 수소의 생산, 저장, 이용을 일체화된 시스템으로 완성시킬 수 있는 URFC 기술은 향후 연료전지 기술과 더불어 풍력과 태양광 발전 등의 신재생 에너지 관련 기술을 함께 발전시킬 수 있는 새로운 연구 분야가 될 것으로 판단된다.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. F. Mitlitsky, B. Myers, A. H. Weisberg, T. M. Molter, and W. F. Smith, Portable Fuel Cells Conference, Lucerne, Switzerland, June 21-24 (1999).
  2. https://www.llnl.gov/str/Mitlit.html.
  3. F. Mitlitsky, B. Myers, and A. H.Weisberg, Energy & Fuels, 12, 56 (1998). https://doi.org/10.1021/ef970151w
  4. K. A. Burke, NASA/TM-2003-212739 (2003).
  5. K. A. Burke, Ian Jakupca, NASA/TM-2004-213355 (2004).
  6. K. A. Burke, Ian Jakupca, NASA/TM-2005-213442 (2005).
  7. U. Wittstadt, E. Wagner, and T. Jungmann, J. Power Sources, 145, 555 (2005). https://doi.org/10.1016/j.jpowsour.2005.02.068
  8. T. Ioroi, T. Oku, 1, K. Yasuda, N. Kumagai, and Y. Miyazaki, J. Power Sources, 124, 385 (2003). https://doi.org/10.1016/S0378-7753(03)00795-X
  9. G. Chen, H. Zhang, J. Cheng, Y. Ma, and H. Zhong, Electrochem. Commun., 10, 1373 (2008). https://doi.org/10.1016/j.elecom.2008.07.002
  10. H.-Y. Jung, S. Park, and B. N. Popov, J. Power Sources, 191, 357 (2009). https://doi.org/10.1016/j.jpowsour.2009.02.060
  11. E. Slavcheva, I. Radev, S. Bliznakov, G. Topalov, P. Andreev, and E. Budevski, Electrochim. Acta, 52, 3889 (2007). https://doi.org/10.1016/j.electacta.2006.11.005
  12. W. Yao, J. Yang, J. Wang, and Y. Nuli, Electrochem. Commun., 9, 1029 (2007). https://doi.org/10.1016/j.elecom.2006.12.017
  13. T. Ioroi, N. Kitazawa, K. Yasuda, Y. Yamamoto, and H. Takenakaa, J. Electrochem. Soc., 147, 2018 (2000). https://doi.org/10.1149/1.1393478
  14. S.-D. Yim, G.-G. Park, Y.-J. Sohn, W.-Y. Lee, Y.-G. Yoon, T.-H. Yang, S. Um, S.-P. Yu, and C.-S. Kim, Int. J. Hydrogen Energ., 30, 1345 (2005). https://doi.org/10.1016/j.ijhydene.2005.04.013
  15. S.-D. Yim, W.-Y. Lee, Y.-G. Yoon, Y.-J. Sohn, G.-G. Park, T.-H. Yang, and C.-S. Kim, Electrochim. Acta, 50, 713 (2004). https://doi.org/10.1016/j.electacta.2004.02.068
  16. S. Song, H. Zhang, X. Ma, Z.-G. Shao, Y. Zhang, and B. Yi, Electrochem. Commun., 8, 399 (2006). https://doi.org/10.1016/j.elecom.2006.01.001
  17. H.-Y. Jung, S.-Y. Huang, P. Ganesan, and B. N. Popov, J. Power Sources, 194, 972 (2009). https://doi.org/10.1016/j.jpowsour.2009.06.030
  18. H.-Y. Jung, S.-Y. Huang, and B. N. Popov, J. Power Sources, 195, 1950 (2010). https://doi.org/10.1016/j.jpowsour.2009.10.002
  19. S.-H. Wang, J. Peng, W.-B. Lui, and J.-S. Zhang, J. Power Sources, 162, 486 (2006). https://doi.org/10.1016/j.jpowsour.2006.06.084
  20. S.-H. Wang, J. Peng, and W.-B. Lui, J. Power Sources, 160, 485 (2006). https://doi.org/10.1016/j.jpowsour.2006.01.020
  21. R. P. O'Hayre and S.-W. Cha, W. Colella, and F. B. Prinz, Fuel cell fundamentals, John Wiley & Sons, New York (2006).
  22. J. Peron, A. Mani, X. Zhao, D. Edwards, M. Adachi, T. Soboleva, Z. Shi, Z. Xie, T. Navessin, and S. Holdcroft, J. Membr. Sci., 356, 44 (2010). https://doi.org/10.1016/j.memsci.2010.03.025
  23. W. Y. Hsu and T. D. Gierke, J. Membr. Sci., 13, 307 (1983). https://doi.org/10.1016/S0376-7388(00)81563-X
  24. M. Fujimura, T. Hashimoto, and H. Kawai, Macromolecules, 14, 1309 (1981). https://doi.org/10.1021/ma50006a032
  25. R. B. Moore and C. R. Martin, Macromolecules, 21, 1334 (1988). https://doi.org/10.1021/ma00183a025
  26. http://www.fuelcell.com/techsheets/Nafion%201135%20115-%20117.pdf.
  27. P. Be´bin, M. Caravanier, and H. Galiano, J. Membr. Sci., 278, 35 (2006). https://doi.org/10.1016/j.memsci.2005.10.042
  28. W. Vielstich, A. Lamm, and H. A. Gasteiger, Hand book of fuel cells, Vol.3, Part 3, John Wiley & Sons, New York (2003).
  29. H.-Y. Jung and J.-K. Park, Int. J. Hydrogen Energ., 34, 3915 (2009). https://doi.org/10.1016/j.ijhydene.2009.02.065
  30. R. S. McLean, M. Doyle, and B. B. Sauer, Macromolecules, 33, 6541 (2000). https://doi.org/10.1021/ma000464h
  31. Y. S. Kim, M. A. Hickner, L. Dong, B. S. Pivovar, and J. E. McGrath, J. Membr. Sci., 243, 317 (2004). https://doi.org/10.1016/j.memsci.2004.06.035
  32. G. Gebel, P. Aldebert, and M. Pineri, Macromolecules, 20, 1425 (1987). https://doi.org/10.1021/ma00172a049
  33. H.-Y. Jung and J.-K. Park, Korean Chem. Eng. Res., 45, 391 (2007).
  34. J. A. Kolde, B. Bahar, M. S. Wilson, T. A. Zawodzinski, and S. Gottesfeld, Proceedings of the First International Symposium on Proton Conducting Membrane Fuel Cells I, Electrochemical Society Proceedings, 95, 193 (1995).
  35. http://www.fuelcell.com/techsheets/Nafion%201135%20115-%20117.pdf.
  36. F. Liu, B. Yi, D. Xing, J. Yu, and H. Zhang, J. Membr. Sci., 212, 213 (2003). https://doi.org/10.1016/S0376-7388(02)00503-3
  37. Y. S. Kim, L. Dong, M. Hickner, T. E. Glass, and J. E. McGrath, Macromolecules, 36, 6281 (2003). https://doi.org/10.1021/ma0301451