DOI QR코드

DOI QR Code

TMTD, MBTS, and CBS Accelerator Effects on a Silica Filled Natural Rubber Compound upon Vulcanization Properties

TMTD, MBTS, CBS 촉진제의 구조가 실리카로 충전된 천연고무 복합소재의 가황 및 물성에 미치는 영향

  • Received : 2010.10.13
  • Accepted : 2011.01.19
  • Published : 2011.04.10

Abstract

Various types of accelerators, thiuram (TMTD), thiazole (MBTS), and sulfenamide (CBS) are added into a silica filled natural rubber (NR) compound. Their effects on vulcanization properties are also investigated. TMTD shows a fast vulcanization rate and a higer maximum torque ($T_{max}$), as well as excellent mechanical properties (hardness, 300% modulus, tensile strength, elongation). MBTS shows a moderate vulcanization rate, a lower $T_{max}$, and mechanical properties. Finally, CBS shows a slow vulcanization rate but excellent mechanical properties. The same vulcanization trend can be found in carbon black filled NR compounds.

본 연구에서는 화학적 구조가 다른 thiuram 계 촉진제인 TMTD (tetramethyl thiuram disulfide), thiazole 계 촉진제인 MBTS (2,2-dithiobis(benzothiazole)), sulfenamide 계 촉진제인 CBS (n-cyclohexyl benzothiazyl-2-sulfenamide)를 사용하여 각각의 촉진제가 실리카가 충전된 천연고무의 가황 특성에 미치는 영향을 비교 평가하였다. TMTD는 상대적으로 빠른 가류 속도와 높은 최대 토크값($T_{max}$), 우수한 기계적 물성을 보였고 MBTS는 상대적으로 중간 정도의 가황 시간과 낮은 $T_{max}$, 기계적 물성을 보였다. 마지막으로 CBS는 느린 가황 시간을 나타낸 반면 상대적으로 우수한 $T_{max}$와 기계적 물성을 나타냈다. 유사한 가황 특성 경향은 카본블랙이 충전된 천연고무 컴파운드에서도 찾아볼 수 있었다.

Keywords

References

  1. U. S. Patent 3,633 (1844).
  2. L. Bateman, C. G. Moore, M. Porter, and B. Saville, in The Chemistry and Physics of Rubber like Substances, ed., L. Bateman, Chapter 19, John Wiley and Sons, New York (1963).
  3. U. S. Patent 1,343,224 (1920).
  4. U. S. Patent 1,411,231 (1922).
  5. U. S. Patent 1,371,662 (1921).
  6. U. S. Patent 1,544,687 (1925).
  7. G. Bruni and E. Romani, Indian Rubber Journal, 62 (1921).
  8. U. S. Patent 1,942,790 (1934).
  9. U. S. Patent 2,100,692 (1937).
  10. F. W. Barlow, Rubber compounding : principles, materials, and techniques, CRC Press, New York (1993).
  11. U. S. Patent 3,546,185 (1970).
  12. EUR Patent EP0501, 227 (1991).
  13. M. P. Wagner, Rubber Chem. Technol, 49, 703 (1976). https://doi.org/10.5254/1.3534979
  14. S. Wolff, Kautsch. Gummi Kunstst., 34, 280 (1981).
  15. S. Wolff, Rubber Chem. Technol., 55, 967 (1982). https://doi.org/10.5254/1.3535926
  16. E. P. Plueddemann, Silane Coupling Agents, Plenum Press, New York (1982).
  17. K. J. Kim and J. Vanderkooi, Kautsch. Gummi Kunstst., 55, 518 (2002).
  18. K. J. Kim and J. Vanderkooi, Int. Polym. Proc., 17, 192 (2002).
  19. K. J. Kim and J. Vanderkooi, Composite Interfaces, 11, 471 (2004). https://doi.org/10.1163/1568554042722946
  20. K. J. Kim and J. Vanderkooi, J. Korean Ind. Eng. Chem., 10, 772 (2004).
  21. K. J. Kim and J. Vanderkooi, Rubber Chem. Technol., 78, 84 (2005). https://doi.org/10.5254/1.3547875
  22. K. J. Kim and J. Vanderkooi, J. Appl. Polym. Sci., 95, 623 (2005). https://doi.org/10.1002/app.21373
  23. A. Y. Coran, in Science and Technology of Rubber, J. E. Mark, B. Erman, and F. R. Eirich (Eds.), 3rd ed., Chapter 7, Academic Press, New York (2005).
  24. R. K. Gupta, E. Kennal, and K. J. Kim, Polymer Nanocomposites Handbook, CRC Press, Boca Raton (2009).
  25. K. J. Kim, Carbon Letters, 10, 101 (2009). https://doi.org/10.5714/CL.2009.10.2.101
  26. K. J. Kim, Carbon Letters, 10, 109 (2009). https://doi.org/10.5714/CL.2009.10.2.109
  27. K. J. Kim and J. L. White, J. Korean Ind. Eng. Chem., 7, 50 (2001).
  28. K. J. Kim, Elastomers and Composites, 44, 134 (2009).
  29. D. K. Jeon and K. J. Kim, Elastomers and Composites, 44, 252 (2009).
  30. A. Y. Coran, Rubber Chem. Technol., 38 (1965).
  31. M. M. Coleman, J. R. Shelton, and J. K. Koening, Rubber Chem. Technol., 46 (1973).
  32. M. H. S. Gradwell and W. J. McGill, J. Appl. Polym. Sci., 51, 177 (1994). https://doi.org/10.1002/app.1994.070510118
  33. M. H. S. Gradwell and W. J. McGill, J. Appl. Polym. Sci., 51, 169 (1994). https://doi.org/10.1002/app.1994.070510117
  34. B. A. Dogadkin, V. Selyukova, Z. Tarasova, A. B. Dobromyslova, M. S. Feldshtein, and M. Kaplunov, Rubber Chem. Technol., 31, 348 (1958). https://doi.org/10.5254/1.3542283
  35. B. A. Dogadkin, O. N. Beliatskaya, A. B. Dobromyslova, and M. S. Feldshtein, Rubber Chem. Technol., 33, 361 (1960). https://doi.org/10.5254/1.3542152
  36. M. H. S. Gradwell, K. G. Hendrikse, and W. J. McGill, J. Appl. Polym. Sci., 72, 1235 (1999). https://doi.org/10.1002/(SICI)1097-4628(19990606)72:10<1235::AID-APP1>3.0.CO;2-O
  37. A. Y. Coran, Rubber Chem. Technol., 37, 679 (1964). https://doi.org/10.5254/1.3540360
  38. M. H. S. Gradwell and W. J. McGill, J. Appl. Polym. Sci., 58, 2193 (1995). https://doi.org/10.1002/app.1995.070581206
  39. M. H. S. Gradwell and W. J. McGill, J. Appl. Polym. Sci., 61, 1131 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960815)61:7<1131::AID-APP9>3.0.CO;2-N
  40. M. H. S. Gradwell and W. J. McGill, J. Appl. Polym. Sci., 61, 1515 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960829)61:9<1515::AID-APP11>3.0.CO;2-P
  41. F. W. H. Kruger and W. J. McGill, J. Appl. Polym. Sci., 42, 2643 (1991). https://doi.org/10.1002/app.1991.070421002
  42. F. W. H. Kruger and W. J. McGill, J. Appl. Polym. Sci., 42, 2661 (1991). https://doi.org/10.1002/app.1991.070421004
  43. F. W. H. Kruger and W. J. McGill, J. Appl. Polym. Sci., 42, 2669 (1991). https://doi.org/10.1002/app.1991.070421005
  44. H. M. Costa, L. L. Y. Visconte, R. C. R. Nunes, C. R. G. Furtado, J. Appl. Polym. Sci., 87, 1405 (2003). https://doi.org/10.1002/app.11514
  45. K. J. Kim and J. Vanderkooi, Int. Polym. Proc., 18, 156 (2003).
  46. S. M. Kim and K. J. Kim, Accelerator effects on Silica and Carbon black filled natural rubber compound upon vulcanization properties, submitted (2011).