DOI QR코드

DOI QR Code

Synthesis and Lubricating Properties of Succinic Acid Alkyl Ester Derivatives

숙신산 알킬 에스테르 유도체의 합성 및 윤활특성

  • Baek, Seung-Yeob (Green Chemistry Research Division, Surfactant & Lubricant Research Team, KRICT) ;
  • Kim, Young-Wun (Green Chemistry Research Division, Surfactant & Lubricant Research Team, KRICT) ;
  • Chung, Keun-Wo (Green Chemistry Research Division, Surfactant & Lubricant Research Team, KRICT) ;
  • Yoo, Seung-Hyun (Green Chemistry Research Division, Surfactant & Lubricant Research Team, KRICT) ;
  • Park, Su-Jin (Department of chemistry, Inha University)
  • 백승엽 (한국화학연구원 그린화학연구단 산업바이오화학연구센터) ;
  • 김영운 (한국화학연구원 그린화학연구단 산업바이오화학연구센터) ;
  • 정근우 (한국화학연구원 그린화학연구단 산업바이오화학연구센터) ;
  • 유승현 (한국화학연구원 그린화학연구단 산업바이오화학연구센터) ;
  • 박수진 (인하대학교 화학과)
  • Received : 2011.01.04
  • Accepted : 2011.02.07
  • Published : 2011.04.10

Abstract

In this paper, a series of alkyl succinic acid esters for base oil were synthesized by condensation reaction of succinic anhydride and fatty alcohol. The structures of the synthesized esters were confirmed by $^1H-NMR$, FT-IR spectrum and GC analysis. Basic properties of esters such as kinematic viscosity (KV), refractive index (RI), total acid number (TAN) and pour points were measured and lubricating properties such as SRV wear scar diameter (SRV WSD), fraction coefficient (COF) and 4-ball wear (4-ball WSD) were also evaluated. As the results of basic properties, KV, RI and pour point of synthetic esters increased as the carbon chain of the esters increased. Measurement value of total acid number (TAN) was indicated between 0.2~4 mgKOH/g, and that metal working fluids and pressure working oils are acceptable to use as base oil. Also, lubricating properties of the esters showed as follows: 0.391~0.689 mm of SRV WSD, 0.110~0.138 of SRV COF and 0.49~0.55 mm of 4-ball WSD depended on the structure of the esters. In a comparison on the lubrication capacity of the SRV test based on polyester TMPTO, SRV WSD result showed that a better performance caused by the alkyl group. On the other hand, SRV COF test was not influenced of the alkyl group which the capacity of the lubricant was sightly diminished than the comparison material, regardless of the alkyl group.

폴리올 에스테르 등의 에스테르 윤활제는 생분해성 및 윤활성능이 우수하여 금속가공유 및 유압작동유등의 윤활기유로 많이 사용되고 있다. 본 연구에서는 윤활성 향상제로 사용하기 위하여 알킬 무수 숙신산과 여러 가지 지방 알콜과의 축합반응을 행하여 알킬 숙시네이트 유도체를 합성하였다. 합성된 알킬 숙시네이트 유도체의 구조는 $^1H-NMR$ 및 FT-IR 스펙트럼으로 분석하였으며 GC 크로마토그램을 통하여 화합물의 순도를 확인하였다. 또한, 합성 유도체의 기본물성으로 점도특성, 굴절률, 전산가, 유동점 등을 측정하였으며 응용물성으로 윤활특성을 SRV 시험기와 4-ball 마모 시험기로 마찰계수(COF) 및 마모흔 직경(SRV WSD 및 4-ball WSD)을 측정하여 평가하였다. 기본물성 평가결과, 점도 특성, 굴절률 및 유동점은 알킬 숙시네이트 유도체에 함유된 알킬기의 탄소수가 증가할수록 높아졌으며 전산가는 0.2~4 mgKOH/g를 나타내어 금속가공유 및 유압작동유의 윤활제로 사용가능함을 알 수 있었다. 윤활성능 평가 결과, SRV WSD 0.391~0.689 mm, SRV COF 값은 0.110~0.138, 4-ball WSD 값은 0.49~0.55 mm를 나타내어 에스테르의 구조에 따라 차이를 나타내었다. 특히, SRV 시험에서 비교물질로 사용된 폴리올 에스테르인 TMPTO와 윤활성능을 비교하였을 때 SRV WSD 결과, 알킬기에 따라 다른 차이를 나타냈지만 비교물질에 비해 비교적 우수한 값으로, SRV COF 결과, 알킬기에 대한 영향을 받지 않고 비교물질에 비해 약간 떨어지는 값을 나타내었다.

Keywords

Acknowledgement

Grant : 숙신산계 정밀화학중간체 제조 및 응용기술개발

Supported by : 지식경제부

References

  1. Colin A. Houston & Associates, Inc, Macinsey report, Agglomerations, The International Detergent Newsletter July/Aug, 19, 4, (2008).
  2. Robson, U. S. Patent 5,972,852 Oct. 26 (1999).
  3. Anderson et al., U. S. Patent 5,798,331 Aug. 25 (1998).
  4. W. Bruce, Hotter et al., U. S. Patent 3,785,981 Jan. 15 (1974).
  5. Maurits Krukziener et al., U. S. Patent 3,331,776 July. 18 (1967).
  6. Afton Chemical Corporation, KR-A-1020060048672, 05, 18 (2006).
  7. Ciba Holding Inc., KR-A-1020050046781, 05, 18 (2005).
  8. Ethyl Corp, KR-A-1019960010840, 04, 20 (1996).
  9. B. G. Hermann, K. Blok, and M. K. Patel, Environ. Sci. Technol., 41, 7915 (2008).
  10. A. M. Barnes, K. D. Bartle, and V. R. A Thibon, Tribol. Int., 34, 389 (2001). https://doi.org/10.1016/S0301-679X(01)00028-7
  11. S. Jahanmir, J. Tribol., 109, 577 (1987). https://doi.org/10.1115/1.3261509
  12. J. J. Dickert and C. N. Rowe, J. Org. Chem., 32, 647 (1967). https://doi.org/10.1021/jo01278a031
  13. S. C. Cermaka, T. A. Isbell, R. L. Evangelista, and B. L. Johnson, Ind. Crops Prod., 33, 132 (2011). https://doi.org/10.1016/j.indcrop.2010.09.012
  14. Elomari et al., U. S. Patent 2010/0311625 A1 Dec. 9 (2010).
  15. P. A. Bertrand, Tribol. Lett., 16, 201, April (2004).
  16. R. O. Dunn and M. O. Bagby, JAOCS, 72, 895 (1995). https://doi.org/10.1007/BF02542067
  17. American Society for Testing and Materials, ASTM designation, D445-97, Philadelphia (2000).
  18. American Society for Testing and Materials, ASTM designation, D446-97, Philadelphia (2000).
  19. American Society for Testing and Materials, ASTM designation, D97-05, Philadelphia (2005).
  20. U. Nestor, Jr. Soriano, P. M. Veronica, and M. Matsumura, Fuel, 85, 25 (2006). https://doi.org/10.1016/j.fuel.2005.06.006
  21. W. A. Affens, J. M. Hall, and R. N. Hazlett, Fuel, 63, 543 (1984). https://doi.org/10.1016/0016-2361(84)90294-1
  22. American Society for Testing and Materials, ASTM designation, D4172-94, Philadelphia (2000).
  23. American Society for Testing and Materials, ASTM designation, D5707-98, Philadelphia (2000).