
디지털산업정보학회 논문지 제7권 제3호-2011년 9월

디지털산업정보학회 논문지 1

Android Real Target Porting Application Software Development*

Hong, Seon Hack**ㆍNam Gung, Il Joo***

안드로이드 리얼 타깃 포팅 응용 소프트웨어 개발

홍 선 학ㆍ남궁일주
<Abstract>

In this paper, we implemented the Android NDK porting application with Eclipse(JDK)

ADT and TinyOS 2.0. TinyOS and Cygwin are component based embedded system and an

open-source basis for interfacing with sensor application from H-mote. Cygwin is a collection

of tools for using the Linux environment for commercially released with x86 32 bit and 64

bit versions of Windows. TinyOS-2. x is a component based embedded OS by UC Berkeley

and is an open-source OS designed for interfacing the sensor application with specific

C-language.

The results of Android porting experiment are described to show the improvement of

sensor interfacing functionality under the PXA320 embedded RTOS platform. We will further

more develop the software programming of Android porting under Embedded platform and

enhance the functionality of the Android SDK with mobile gaming and kernel programming

under sensor interfacing activity.

Key words : Froyo, Kernel, JAVA NDK, Android Platform, Cygwin

Ⅰ. Introduction
1)

Now is an exciting time for us like embedded

software developers. Mobile devices which are

operated with Android have never been more popular,

and powerful functions for them are an

overwhelmingly popular choice for consumers. Stylish

and versatile devices packing hardware features like

　*본 연구는 2010학년도 서일대학 교내학술연구비지원으로 수

행되었음.

** 서일대학 컴퓨터전자과 교수

*** 서일대학 인터넷정보과 겸임교수

GPS, accelerometers, and touch screens, combined with

fixed-rate, provide an enticing platform upon which to

create innovative mobile applications[1].

With much existing mobile development built on

proprietary operating systems that restrict the

development and deployment of third-party

applications, Android offers an open alternative.

Without artificial barriers, like us as Android users

are free to write applications that take full advantage

of increasingly powerful mobile hardware and

distribute them in an open society.

Android Real target Porting Application Software Development

2 제7권 제3호

Built on an open source framework, and featuring

powerful SDK libraries and an open philosophy,

Android has opened mobile software development to

thousands of developers who haven’t had access to

tools for building mobile applications. Experienced

mobile software developers can now expand into the

Android platform, leveraging the unique features to

enhance existing functions or crate innovative new

ones[2-3].

Ⅱ. Basic Theory
This chapter provides a fundamental overview of

understanding the Android Software Stack. In

Android, native third-party applications are written

with the same APIs and executed on the same run

time. These APIs feature hardware access,

location-based services, map-based activities,

inter-application communication, and 2D and 3D

graphics.

Historically, like us developers, generally coding in

low-level C or C++, have needed to understand the

specific hardware they were coding for, generally a

single device or possibly a range of devices from a

single manufacturer. As hardware technology and

mobile internet access has advanced, these closed

approaches have become outmoded.

More recently, the outstanding advance in mobile

development was the introduction of Java-hosted

MIDlets. MIDlets are executed on a Java virtual

machine, a process that abstracts the underlying

hardware and lets developers create applications that

run on the wide variety of devices that supports the

Java run time. Unfortunately, this convenience comes

at the price of restricted access to the device hardware.

In this field, it was considered normal for third-party

applications to receive different hardware access and

execution rights from those given to native

applications written by the phone makers, with

MIDlets often receiving few of either.

The introduction of a Java MIDlets expanded

developer’s audiences, but the lack of low-level

hardware access and sandboxed execution meant that

most applications are regular desktop programs or

web sites designed to render on a smaller screen, and

do not take advantage of the inherent mobility of the

handheld platform.

Android offers new possibilities for mobile

applications by offering an open development

environment built on an open-source Linux kernel.

Hardware access is available to all applications through

a series of APIs libraries, and application interaction,

while carefully controlled, is fully supported. In

Android, all applications have equal standing.

Third-party and native Android applications are written

with the same APIs and are executed on the same run

time. Users can remove and replace any native

application with a third-party developer alternative;

even the dialer and home screen can be replaced.

2.1 Android Stack
In the proposed architecture of Fig 1, a Linux kernel

and a collection of C/C++ libraries are exposed

through an application framework that provides

services for, and management of, the run time and

applications.

Linux kernel is core services (including hardware

drivers, process and memory management, security,

Android Real target Porting Application Software Development

디지털산업정보학회 논문지 3

Fig 1. Android Software Stack

network, and power management) which are handled

by a Linux 2.6 kernel. The kernel also provides an

abstraction layer between the hardware and the

remainder of the stack.

Android contains various C/C++ core libraries

(including a media library, surface manager, Graphics

libraries, SQLite database, and SSL and WebKit for

integrated web browser and Internet security) such as

libc and SSL which are running on top of the kernel.

Android run time is what makes an Android phone

rather than a mobile Linux implementation. Including

the core libraries and the Dalvik virtual machine, the

Android run time is the engine that powers your

applications and, along with the libraries, forms the

basis for the application framework.

Especially, the core libraries provide most of the

functionality available in the core Java libraries as well

as the Android-specific libraries. Dalvik is a

register-based virtual machine that’s been optimized to

ensure that a device can run multiple instances

efficiently. It relies on the Linux kernel for threading

and low-level memory management.

The application framework provides the classes

used to create Android applications. It also provides a

generic abstraction for hardware access and manages

the user interface and application resources.

All applications, both native and third-party, are

built on the application layer by means of the same

API libraries. The application layer runs within the

Android run time, using the classes and services made

available from the application framework[4-6].

2.2 Dalvik Virtual Machine
There are very outstanding three items in the

Android architecture such as ; Dalvik virtual machine,

Application and libraries. One of the key elements of

Android is the Dalvik virtual machine. Rather than use

a traditional Java virtual machine(VM) such as Java

ME (Java Mobile Edition), Android uses its own

custom VM designed to ensure that multiple instances

on a single device.

The Dalvik VM uses the device’s underlying Linux

kernel to handle low-level functionality including

security, threading, and process and memory

management. It’s also possible to write C/C++

applications that run directly on the underlying Linux

OS. If the speed and efficiency of C/C++ is required

for your applications, Android now provides a Native

Development Kit(NDK, r5c). The NDK is designed to

enable you to create C++ libraries using the libc and

libm libraries, along with native access to OpenGL.

All Android hardware and system service access is

managed using Dalvik as a middle tier. By using a

VM to host application execution, developers have an

abstraction layer that ensures they never have to worry

Android Real target Porting Application Software Development

4 제7권 제3호

about a particular hardware implementation. The

Dalvik VM executes Dalvik executable files, a format

optimized to ensure minimal memory footprint. We

create. dex executables by transforming Java language

compiled classes using the tools supplied within the

SDK.

2.3 Application Architecture
Android’s architecture encourages the concepts of

component reuses, enabling you to publish and share

Activities, Services, and data with other applications,

with access managed by the security restrictions we

put in place. The same mechanism that lets you

produce a replacement contact manager or phone

dialer can let us expose our application components to

let other developers create new UI front ends and

functionality extension, or otherwise build on them.

There are several application services in the

application services such as ; Activity Manager which

controls the life cycle of our Activities, Views which

are used to construct the user interfaces for our

Activities, Notification Manager which provides a

consistent and nonintrusive mechanism for signaling

users, Content Providers which let our applications

share data, and Resource manager which supports

non-code resources like string and graphics to be

externalized.

In the final stage, Android offers a number of APIs

for developing our applications. Rather than list them

all here, we are referred to the documentation at the

web site of the android developing reference package

which gives a complete list of packages included in

the Android SDK. Although Android is intended to

target a wide range of mobile hardware, so be aware

that the suitability and implementation of some of the

advanced or optional APIs may vary depending on the

host devices[7-8].

Ⅲ. JNI Development Enviromnet
In this paper, We used the JNI(Java Native

Interface) which implement the C/C++ language code

under Java environment. And also we need the

Android NDK(r5c) and ADT(11.0.0) plugin for Eclipse.

3.1 Android NDK
The Android NDK is a toolset that lets us embed

components that make use of native code in our

applications.

Android applications run in the Dalvik VM. The

NDK allows us to implement parts of our applications

using native-code languages such as C and C++. This

can provide benefits to certain classes of applications,

in the form of reuse of existing code and in some

cases increased speed.

The latest release of the NDK supports ARMv5TE

and ARMv7-A instruction sets. ARMv5TE machine

code will run on all ARM-based Android devices.

ARMv7-A will run only on devices such as the

Verizon Droid or Google Nexus One that have a

compatible CPU. The main difference between the two

instruction sets is that ARMv7-A supports hardware

FPU, Thumb-2, and NEON instructions.

The NDK provides stable headers for libc (the C

Android Real target Porting Application Software Development

디지털산업정보학회 논문지 5

Fig 2. Layout of Overall System

library), libm (the Math library), OpenGL ES (3D

graphics library), the JNI interface, and other libraries.

The NDK will not benefit most applications, so we

need to balance its benefits against its drawbacks;

notably, using native code does not result in an

automatic performance increase, but always increases

application complexity. And therefore, we should only

use native code if it is essential to our application, not

just because we prefer to program in C/C++.

The NDK includes a set of cross-toolchains (

compilers, linkers, etc) that can generate native ARM

binaries on Linux, OS X, and Windows(with Cygwin)

platforms[9-10].

3.2 ADT Plugin for Eclipse
Android Development Tools (ADT) is a plugin for

the Eclipse IDE that is designed to give us a powerful,

integrated environment in which to build Android

applications.

ADT extends the capabilities of Eclipse to let us

quickly set up new Android projects, create an

application UI, add components based on the Android

Framework API, debug our applications using the

Android SDK tools, and even export signed (or

unsigned). apk files in order to distribute your

application.

Developing in Eclipse with ADT is highly

recommended and is the fastest way to get started.

With the guided project setup it provides, as well as

tools integration, custom XML editors, and debug

output pane, ADT gives you an incredible boost in

developing Android applications. Figure 2 displays the

layout of overall system.

3.3 Communication Interface with Cygwin
In this paper, we could use a number of interfaces

to abstract the underlying communications services

and a number of components that provide these

interfaces. All of these interfaces and components use a

common message buffer abstraction, called message_t,

which is implemented as a nesC struct. There are a

number of interfaces and components that use

message_t as the underlying data structure.

－ Packet : provides the basic accessors for message_t

abstract data type. This interface provides

commands for clearing a message’s content’s,

getting its payload length, and getting a pointer to

its payload area.

－ Send : provides the basic address-free message

sending interface. This interface provides

commands and cancelling a pending message send,

and an event to indicate whether a message was

sent successfully or not.

－ Receive : provides the basic message reception

interface. This interface provides an event for

receiving messages.

Since it is very common to have multiple services

Android Real target Porting Application Software Development

6 제7권 제3호

using the same radio to communicate, TinyOS provide

the Active Message(AM) layer to multiplex access to

the radio. Am type are similar in function to the

Ethernet frame type filed, IP protocol filed, and the

UDP port in that all of them are used to multiplex

access to a communication service. AM packets also

include a destination filed, which stores an “AM

address” to address packets to particular motes[11-13].

In this paper, We have defined a message type for

our application. We want a timer-driven system in

which every firing of the timer results in (i)

incrementing a counter, (ii) displaying a number of

bits of the counter, and (iii) transmitting the node’s id

and counter value over the radio. To implement this

program, we follow a number of simple steps.

First, we need to identify the interfaces that provide

access to the radio and allow us to manipulate the

message_t type. Second, we must update the module

block in the application program by adding uses

statements for the interfaces we need. Third, we need

to declare new variables and add any initialization and

start/stop code that is needed by the interfaces and

components. Fourth, we must add any calls to the

component interface we need for our application. Fifth,

we need to implement any events specified in the

interfaces we plan on using. Sixth, the application

configuration interface must be updated by adding a

components statement for each component we sue that

provides one of the interface we choose earlier. Finally,

we need to wire the interface used by the application

to the components which provide those interfaces

[14-17].

Ⅳ. Embedded Controller Design
In this chapter, we describe the characteristics of

embedded RTOS controller, including MSP430CPU,

cc2420-RF chip and nesC.

4.1 Mixed Signal Controller
The MSP430 has a 16-bit RISC architecture that is

highly transparent to the application. All operations,

other than program-flow instructions, are performed as

register operations in conjunction with seven addressing

modes for source operand and four addressing modes

for destination operand. The CPU is integrated with 16

registers that provide reduced instruction execution time.

The register-to-register operation execution time is one

cycle of the clock.

The digitally controlled oscillator(DOC) allows

wake-up from low-power modes to active mode in less

than 6 . This device has two built-in 16-bit timers, a

fast 12-bit A/D converter, dual 12-bit D/A converter,

one or two universal serial synchronous/ asynchronous

communication interfaces (USART),   , DMA, and

48 I/O pins, In addition, it offers extended RAM

addressing for memory-intensive applications and large

C-stack requirements.

The RF chip, cc2420 has high performance and low

power 8051 micro-controller core, and 2.4GHz IEEE

802.1.5.4 compliant RF transceiver. This device has 32,

64, or 128 KB in-system programmable flash, and 8KB

SRAM, 4KB with data retention in all power modes.

We use only a single crystal needed for mesh network

systems and two powerful USARTs with support for

Android Real target Porting Application Software Development

디지털산업정보학회 논문지 7

Fig 3. TinyOS Application Layer

several serial protocols[18-19].

4.2 NesC Language
In this paper, we implement controller with nesC

which is a new language for programming structured

component-based applications. The nesC language is

primarily intended for embedded systems such as

sensor networks. nesC has a C-like syntax, but supports

the TinyOS concurrency model, as well as mechanisms

for structuring, naming, and linking together software

components into robust network embedded systems.

The nesC has a several features. First, nesC applications

are built out of components with well-defined,

bidirectional interfaces. Second, nesC defines a

concurrency model, based on tasks and hardware event

handlers, and detects data races at compile time.

There are two types of components in nesC:

modules and configurations. Modules provide

application code, implementing one or more interface.

Configurations are used to assemble other components

together, connecting interfaces used by components to

interfaces provided by others. This is called wiring.

Every nesC application is described by a top-level

configuration that wires together the components

inside. In nesC, downcalls are generally commands,

while upcalls are events. An interface specifies both

sides of this relationship. Figure 3 represents the

structure of TinyOS Application Layer.

4.3 Sensor Interfaces and Applications
We implemented the embedded sensor interfaces

with TinyOS. Because sensor nodes have a broad

range of hardware capabilities, one of the goals of

TinyOS is to have a flexible hardware/software

boundary. Our experiments that encrypts packets

should be able to interchangeably use hardware or

software implementations. Hardware, however, is

almost always split-phase rather than blocking.

It is split-phase in that completion of a request is a

callback. In our experiment, to acquire a sensor

reading with an A/D converter, software writes to a

few configuration registers to start a sample. When the

ADC sample completes, the hardware issues an

interrupt, and the software reads the value out of a

data register[20-21].

The problem with threads in embedded systems is

that they require a good deal of RAM. Each thread has

its own private stack which has to be stored when a

thread is waiting or idle. When a thread samples a

blocking ADC and is put on the wait queue, the

memory of its entire call stack has to remain

untouched so that when it resumes it can continue

execution. TinyOS therefore takes the opposite

approach. Rather than make everything synchronous

through threads, operations that are split-phase in

software as well. This means that many common

operations, such as sampling sensors and sending

packets, are split-phase.

Android Real target Porting Application Software Development

8 제7권 제3호

Fig 4. Structure of Dispatcher Pattern

Fig 5. Structure of Software Flow

Fig. 6 Experimental Results

An important characteristics of split-phase interfaces

is that they are bidirectional: there is a downcall to

start the operation, and an upcall that signifies the

operation is complete. In nesC, downcalls are generally

commands, while upcalls are events. An interface

specifies both sides of this relationship.

Figure 4 represents the structure of dispatcher

pattern.

A better approach in TinyOS is to use the

dispatcher pattern. A Dispatcher invokes operations

using a parameterised interface based on a data

identifier. Operation implements the desired

functionality and wires it to the dispatcher. The

compile-time binding of the operation simplifies

program analysis and puts dispatch tables in the

compiled code, saving RAM. Dispatching provides a

simple way to develop programs that executes in

reaction to their environment[22-23].

Figure 5 shows the internal procsessing flow of

Embedded Android platform. In this flow, we use the

JNI object file which should generate the native

code(libhello-jni) for Android and JNI source file

which control the TinyOS sensor network with RF

communications.

Commands init(), start() and stop() are the initial

state of the Android program. Usb port open()

function setups the usb port. The void onCreate()

function generates the thread which starts the Android

application program. System loadlibrary, “Hello-jni”

callup the API function. DataByteStr receives the

sensor data from H-mote. Widget function displays the

sensor data to the LCD of the Embedded TKU 320.

Figure 6 describes the data-logging result of

temperature in H-mote sensor with the Android

platform embedded TKU320 interfacing USN via RF

communications. First we used the log-cat functions

with Eclipse for verifying the sensing data, and after

setup the GUI with interfacing JDK program for

Android platform.

The GUI of the LCD in the TKU320 describes the

temperature signal from H-mote under the Cygwin

and TinyOS environments. It is possible to show the

Android Real target Porting Application Software Development

디지털산업정보학회 논문지 9

several sensing data in this Android system, using

multi-processing or multi-threading of Dalvik virtual

machine.

Ⅴ. Conclusions
In this paper, we implement the Android NDK

porting application with Eclipse(JDK) ADT and TinyOS

2.0. TinyOS and Cygwin are component based

embedded system and an open-source basis for

interfacing with sensor application from H-mote.

This experiment describes the improvement of

sensor interfacing functionality under the Android

PXA320 embedded RTOS platform.

The results of experiment are described to show the

flexibility of mobile devices, such as smart phone or

portable electronics devices. We will experiment the

results of this paper in detail to be broaden the scope

of sensor interface and design considerations.

참고문헌
[1] 김명호, Cygwin과 함께 배우는 C 프로그래밍, 홍릉

출판사, 02. 2010

[2] Levis, Philip, TinyOS Programming, Cambridge

University Press, 04. 2009

[3] Matischek, Rainer, A TinyOS-Based Ad Hoc

Wireless Sensor network, VDM Verlag, 07. 2008

[4] Marvell PXA320 Processor, Graphics and Input

Controller, December 14, 2006

[5] 김상형, 안드로이드 프로그래밍 정복, 한빛미디어,

5, 10, 2010.

[6] Mary Campione, Kathy Walrath, The Java

Tutorial, Object-Oriented programming for the

Internet, Addison-Wesley, 2001.

[7] Downey, Allen B, Python for software Design,

Cambridge, 03, 2009.

[8] http://developer.android.com/refernece/packages.

html

[9] 노성동, 이명의, 임베디드 리눅스 구조와 응용, GS

인터비젼, 5, 2009.

[10] Philip Levis, TinyOS programming Guide,

Computer Systems Laboratory Stanford

University, 10. 2006.

[11] 홍선학, “UML기반의 창의공학용 로봇설계, 한국통

신학회,” 제33권, 제10호, 2008, pp. 343-349.

[12] 홍선학, “GUI환경을 갖는 퍼지기반 이동로봇제어,”

대한전자공학회, 제43권, IE편, 제4호, 2006, pp.

340-347.

[13] 홍선학, “센서결합을 이용한 이동로봇제어,” 대한전

자공학회, 제42권, TE편, 제2호, 2005, pp. 91-98.

[14] 홍선학, “영상 추적을 이용한 이동로봇제어,” 대한

전자공학회, 제42권, TE편, 제4호, 2005, pp.

201-208.

[15] Philip Levis, Component Composition and Radio

Communication, Computer Systems Laboratory

Stanford University, 07. 2003.

[16] 김정원, 신진철, 박형근, “Zigbee를 이용한 사용자

인식기반의 헬스케어시스템구현,” 디지털산업정보

학회, 제4권,3호, 2008.

[17] Philip Levis, Simulating TinyOS Applications in

TOSSIM, Computer Systems Laboratory Stanford

University, 08. 2003.

[18] Nagy, Chris, Embedded Systems Design Using

the Ti Msp430 Series, Newnes, 09. 2003.

[19] 홍선학, 윤진섭, “임베디드 RTOS기반의 로봇 컨트

롤러 설계,” 디지털 산업정보학회, 제6권 4호, 2010.

[20] 조나단 코벳, 리눅스 디바이스 드라이버, 한빛미디

Android Real target Porting Application Software Development

10 제7권 제3호

홍 선 학
Hong, Seon Hack

1992년~현재 서일대학 컴퓨터전자과 교수
1994년 광운대학교 대학원 박사 졸업
1988년 광운대학교 전기공학과 석사졸업
1985년 광운대학교 전기공학과 학사졸업
관심분야 : 제어, 컴퓨터응용, 로봇 분야 등
E-mail : hongsh@seoil.ac.kr

남궁 일 주
Nam Gung, Il Joo

2008년~현재 서일대학 인터넷정보과 겸임교수
2002년 EBS 교육방송 컴퓨터강좌 강사
관심분야 : 멀티미디어
E-mail : allcom@allcom.co.kr

논문접수일 : 2011년 6 월 27 일
수　정　일 : 2011년 8 월 12 일
게재확정일 : 2011년 8 월 23 일

어, 1999.

[21] PXA320_Monahans_P_DM_Vol[1]+Rev_0.95

System and Timer Developers, 11, 7, 2006

[22] Reto Meyer, Professional Android 2 Application

Development, Wrox, 02. 2010.

[23] 홍선학, “MCU플랫폼창의공학용 로봇 제어기 설

계,” 디지털 산업정보학회, 제5권 4호, 2009.

▪저자소개▪

