DOI QR코드

DOI QR Code

Thermal Investigation of Joule-Heating-Induced Crystallization of Amorphous Silicon Thin Film

비정질 실리콘의 결정화를 위한 줄 가열 유도 결정화 공정에 대한 열적 연구

  • Kim, Dong-Hyun (Graduate Student, Dept. of Mechanical Engineering, Hongik Univ.) ;
  • Park, Seung-Ho (Dept. of Mechanical and System Design Engineering, Hongik Univ.) ;
  • Hong, Won-Eui (Dept. of Material Science and Engineering, Hongik Univ.) ;
  • Ro, Jae-Sang (Dept. of Material Science and Engineering, Hongik Univ.)
  • 김동현 (홍익대학교 대학원 기계공학과) ;
  • 박승호 (홍익대학교 기계시스템디자인공학과) ;
  • 홍원의 (홍익대학교 신소재공학과) ;
  • 노재상 (홍익대학교 신소재공학과)
  • Received : 2010.05.26
  • Accepted : 2010.12.14
  • Published : 2011.03.01

Abstract

The large-area crystallization of amorphous silicon thin films on glass backplanes is one of the key technologies in the manufacture of flat-panel displays. Joule-heating induced crystallization (JIC) is a recently introduced crystallization technology. It is considered a highly promising technique for fabricating OLEDs, because the film of amorphous silicon on glass can be crystallized in tens of microseconds, minimizing thermal and structural damage to the glass. In this study, we theoretically and experimentally investigated the temperature variation during the phase transformation. The critical temperatures for crystallization were determined for both solid-solid and solid-liquidsolid transitions, by carrying out in-situ temperature measurements and numerical analysis of the JIC.

대면적 비정질 실리콘 박막의 결정화는 평판 디스플레이 생산에 있어서 핵심 요소로 꼽힌다. 현재 다양한 결정화 기술들이 연구 되고 있으며 그 중 최근에 소개된 줄 가열 유도 결정화는 수십 마이크로초의 짧은 공정 시간, 대면적 결정화 그리고 국부적인 가열로 기판의 열변형 억제 등의 잇점으로 인해 AMOLED 제작에 있어서 기대되는 기술이다. 본 연구에서는 JIC 공정 중 상변화과정에서의 온도를 이론적으로 해석하고 이를 실험과 비교하였다. 이를 통하여 결정화 메커니즘을 결정하는 임계온도를 in-situ 실험과 수치해석을 통해 밝혀내었다.

Keywords

References

  1. Peng, D. Z., Zan, H. W., Shin, P. S., Chang, T. C., Lin, C. W. and Chang, C. Y., 2002, Comparison of Poly-Si Films Deposited By UHVCVD and LPCVD and Its Application for Thin Film Transistors, Vacuum, Vol. 67, pp. 641-645. https://doi.org/10.1016/S0042-207X(02)00255-5
  2. Im, J. S., Kim, H. J. and Thompson, M. O., 1993, Phase Transformation Mechanisms Involved in Excimer Laser Crystallization of Amorphous Silicon Films, Appl. Phys. Lett. Vol. 63, pp. 2969-2971.
  3. Voutsas, A. T. and Hatalis, M. K., 1992, Structure of As-Deposited LPCVD Silicon Films at Low Deposition Temperature and Pressures, J. Electrochem. Soc. Vol. 139, No. 9, pp. 2659-2665. https://doi.org/10.1149/1.2221280
  4. Yoon, S. Y., Park, S. J., Kim, K. H. and Jang, J., 2001, Metal-Induced Crystallization of Amorphous Silicon, Thin Solid Films, Vol. 383, pp. 34-38. https://doi.org/10.1016/S0040-6090(00)01790-9
  5. Lee, S. W. and Joo, S. K., 1996, Low Temperature Poly-Si Thin-Film Transistor Fabrication by Metal- Induced Lateral Crystallization, IEEE Electron Dev. Lett., Vol. 17, No. 4, pp. 160-162. https://doi.org/10.1109/55.485160
  6. Hong, W. E. and Ro, J. S., 2007, Millisecond Crystallization of Amorphous Silicon Films by Joule-Heating Induced Crystallization Using a Conductive Layer, Thin Solid Films, Vol. 515, pp. 5357-5361. https://doi.org/10.1016/j.tsf.2007.01.028
  7. Hong, W. E., Chung, J. K., Kim, D. H., Park, S. H. and Ro, J. S., 2010, Supergrains Produced by Lateral Growth Using Joule-Heating Induced Crystallization without Artificial Control, Appl. Phys. Lett, Vol. 96, 052105-052107. https://doi.org/10.1063/1.3253704
  8. Spinella, C., Lombardo, S. and Priolo, F., 1998, Crystal Grain Nucleation in Amorphous Silicon, J. App. Phys., Vol. 84, No. 10, pp.5383-5414. https://doi.org/10.1063/1.368873
  9. Smith, M., McMahon, R., Voelskow, M., Panknin, D. and Skorupa, W., 2005, Modeling of Flash Lamp Induced Crystallization of Amorphous Silicon Thin Films on Glass, J. Crys. Growth. Vol. 285, pp. 249-260. https://doi.org/10.1016/j.jcrysgro.2005.08.033
  10. Hatano, M., Moon, S., Lee, M., Suzuki, K. and Grigoropoulos, C. P., 2000, In Situ and ex Situ Diagnostics on Melting and Resolidification Dynamics of Amorphous and Polycrystalline Silicon Thin Films During Excimer Laser Annealing, J. Non-Crystalline Solids, Vol. 266-269, No. 1, pp. 654-658. https://doi.org/10.1016/S0022-3093(99)00768-1
  11. Cagran, C., Wilthan, B. and Pottlacher, G., 2003, Symposium on Thermophysical Propoperties in Boulder, CO, USA.
  12. The REMBAR Company. Inc, http://www.rembar.com/default.htm Dobbs Ferry.
  13. Rizzoni, G., 2005, Principles and Applications of Electrical Engineering 5th, McGraw-Hill. Inc.
  14. Samsung Corning Precision Glass Inc, www.samsungscp. co.kr.
  15. Miyasaka, M. and Stoemenos, J., 1999, Excimer Laser Annealing of Amorphous and Solid-Phase- Crystallized Silicon Films, J. Appl. Phys., Vol. 86, No. 10, pp. 5556-5565. https://doi.org/10.1063/1.371560
  16. Ishihara, R., Wilt, P. C., Dijk, B. D., Burtsev, A., Metselaar, J. W. and Beenkker, C.I.M., 2003, Advanced Excier-Laser Crystallization Process for Single Crystalline Thin Film Transistors, Thin Solid Films, Vol. 427, pp. 77-85. https://doi.org/10.1016/S0040-6090(02)01250-6
  17. Kuo, C. C., Yeh, W. C., Lee, J. F. and Jeng, J. Y., 2007, Effects of Si Film Thickness and Substrate Temperature on Melt Duration Observed in Laser-Induced Crystallization of Amorphous Si Thin Films Using In-Situ Transient Reflectivity Measurements, Thin Solid Films, Vol. 515, pp. 8094-8100. https://doi.org/10.1016/j.tsf.2007.04.124
  18. Bonse, J., Brzezinka, K. -W. and Meixner, A. J., 2004, Modifying Single-Crystalline Silicon by Femtosecond Laser Pulses: an Analysis by Micro Raman Spectroscopy, Scanning Laser Microscopy and Atomic Force Microscopy, Appl. Surf. Sci., Vol. 221, No. 1-4, pp. 215-230. https://doi.org/10.1016/S0169-4332(03)00881-X
  19. Yan, J., Asami, T. and Kuriyagawa, T., 2008, Modifying Single-Crystalline Silicon by Femtosecond Laser Pulses: an Analysis by Micro Raman Spectroscopy, Scanning Laser Microscopy and Atomic Force Microscopy, App. Surf. Sci., Volume 32, Issue 3, pp. 186-195.