DOI QR코드

DOI QR Code

Numerical Evaluation of Debris Transport During LOCA Blow-Down Phase of OPR1000 Nuclear Power Plant

CFD 를 이용한 OPR1000 원자력발전소 파단방출이동에 대한 수치해석적 평가

  • Choi, Kyung-Sik (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Park, Jong-Pil (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Jeong, Ji-Hwan (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Kim, Won-Tae (Research Institute of Mechanical Engineering, Pusan Nat'l Univ.)
  • 최경식 (부산대학교 기계공학부) ;
  • 박종필 (부산대학교 기계공학부) ;
  • 정지환 (부산대학교 기계공학부) ;
  • 김원태 (부산대학교 기계기술연구원)
  • Received : 2010.07.05
  • Accepted : 2010.12.18
  • Published : 2011.03.01

Abstract

In a loss-of-coolantaccident, considerable debris may be generated and transported to the recirculation sump. The accumulation of debris will reduce the netpositivesuctionhead and threaten the safety of thenuclear power plant. Both NEI 04-07 and USNRC SER suggesteda CFD methodology. However, additional investigation is needed to consider the unique characteristics of nuclear power plants. The transport of the generated debris is strongly influenced by the break location and the plant characteristics, including the configuration.In this paper, a CFD methodology for blow-down transport evaluation is proposed and applied to an OPR1000 nuclear power plant. The results show that the percentage of small debris transported to the upper containment is 32%, which is 7% larger than the valuegiven in the NEI 04-07 baseline analysis. This result may be used as a point of reference in future analytical studies.

원자력발전소에 냉각재상실사고 발생 시 보온재 파편 등 이물질이 발생하여 방출된 냉각재를 따라 재순환 집수조에 흘러갈 수 있다. 이물질들이 펌프 흡입구에 축적되면 냉각수 흡입을 방해함으로써 원자력발전소 안전에 위협이 될 수 있다. NEI 04-07 및 USNRC 의 평가보고서가 이물질이동분율 평가에 대한 방법론을 제공하였지만 각 원자력발전소 고유특성을 반영한 추가적인 연구가 필요하다. 본 연구에서는 전산유체역학 코드를 사용한 원자력발전소 파단방출이동 해석 방법론을 수립하고 해석을 수행하였다. 해석 결과, 소형 이물질의 32%가 원자로건물 상부로 이동하였다. 이는 NEI 04-07 의 기본해석결과보다 7% 많은 양이다. 본 연구결과는 향후 수행될 이물질이동에 대한 해석적 연구에 중요한 참고자료가 될 것으로 판단된다.

Keywords

References

  1. USNRC, 1975, "Containment Emergency Sump Performance," Regulatory Guide 1.82 Revision 0, USNRC, Washington D.C..
  2. USNRC, 1985, "Water Source for Long-Term Recirculation Cooling Following a Loss-of-Coolant Accident," Regulatory Guide 1.82 Revision 1, USNRC, Washington D.C..
  3. USNRC, 2004, "Pressurized Water Reactor Sump Performance Evaluation Methodology," Safety Evaluation by the Office of Nuclear Regulation Related to NRC Generic Letter 2004-02, Nuclear Energy Institute Guidance Report, USNRC, Washington D.C..
  4. USNRC, 2003, "Water Source for Long-Term Recirculation Cooling Following a Loss-of-Coolant Accident," Regulatory Guide 1.82 Revision 3, USNRC, Washington D.C..
  5. Nuclear Energy Institute, 2004, "Pressurized Water Reactor Sump Performance Evaluation Methodology, " NEI 04-07.
  6. Zigler, G., Bridaeu, J., Rao, D. V., Shaffer, C., Souto, F. and Thomas, W., 1995, "Parametric Study of the Potential for BWR ECCS Strainer Blockage Due to LOCA Debris," NUREG/CR-6224, Los Alamos National Laboratory.
  7. USNRC, 2004, "Potential Impact of Debris Blockage on Emergency Sump Recirculation at Pressurized-Water Reactors," Generic Letter 2004-02, USNRC, Washington D.C..
  8. Lee, J. I., Hong, S. J., Kim, J., Lee, B. C., Bang, Y. S., Oh, D. Y. and Huh, B. G., 2008, "Debris Transport Analysis Related with GSI-191 in Advanced Pressurized Water Reactor Equipped with Incontainment Refueling Water Storage Tank," Experiments and CFD Code Applications to Nuclear Reactor Safety, OECD/NEA & IAEA Workshop, CEA Grenoble, France.
  9. KEPCO, 1998, Final Safety Analysis Report for ULCHIN Unit 3 & 4, Korea Electric Power Corporation, Seoul.
  10. Rao, D. V., Letellier, B. C., Maji, A. K. and Marshell, B., 2002, "GSI-191: Separate-Effects Characterization of Debris Transport in Water," NUREG/CR-6772, Los Alamos National Laboratory.
  11. USNRC, 2002, "GSI-191: Integrated Debris Transport Tests in Water Using Simulated Containment Floor Geometry," NUREG/CR-6773, USNRC, Washington D.C..